32 research outputs found

    Mitogen-induced stimulation and suppression of erythroid burst promoting activity production by human mononuclear cells

    Full text link
    Exposure of human peripheral blood mononuclear cells or highly enriched monocytes to various plant lectins substantially alters their production of erythroid burst promoting activity (BPA). Neither unstimulated, nor mitogen stimulated, enriched T lymphocytes produced demonstrable BPA. Each of the lectins tested resulted in a different pattern of alteration of BPA production by mononuclear cells. Increasing concentrations of phytohaemagglutinin (PHA) caused a progressive increase in BPA production up to a plateau level at concentrations above 0·25–0·5 Μ1/ml. Concanavalin A (Con A) at concentrations of 0·05–0·1 Μg/ml stimulated BPA production, but Con A concentrations > 1 Μg/ml never augmented BPA production by mononuclear cells. Pokeweed mitogen inhibited BPA production by mononuclear cells in a concentration-dependent manner. Since PHA and Con A can bind to and stimulate both monocytes/macrophages and T lymphocytes, some production of BPA by stimulated T cells in the presence of monocytes cannot be ruled out. Earlier studies demonstrated that T cells augment monocyte production of BPA. Thus, monocyte–T cell interactions, as well as activation of monocytes and perhaps lymphocytes, play an important role in regulation of BPA production in vitro .Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73808/1/j.1365-2141.1983.tb01232.x.pd

    Physiologically Low Oxygen Enhances Biomolecule Production and Stemness of Mesenchymal Stem Cell Spheroids

    No full text
    Multicellular human mesenchymal stem cell (hMSC) spheroids have been demonstrated to be valuable in a variety of applications, including cartilage regeneration, wound healing, and neoangiogenesis. Physiological relevant low oxygen culture can significantly improve in vitro hMSC expansion by preventing cell differentiation. We hypothesize that hypoxia-cultured hMSC spheroids can better maintain the regenerative properties of hMSCs. In this study, hMSC spheroids were fabricated using hanging drop method and cultured under 2% O(2) and 20% O(2) for up to 96 h. Spheroid diameter and viability were examined, as well as extracellular matrix (ECM) components and growth factor levels between the two oxygen tensions at different time points. Stemness was measured among the spheroid culture conditions and compared to two-dimensional cell cultures. Spheroid viability and structural integrity were studied using different needle gauges to ensure no damage would occur when implemented in vivo. Spheroid attachment and integration within a tissue substitute were also demonstrated. The results showed that a three-dimensional hMSC spheroid cultured at low oxygen conditions can enhance the production of ECM proteins and growth factors, while maintaining the spheroids' stemness and ability to be injected, attached, and potentially be integrated within a tissue
    corecore