31 research outputs found
Radiative Corrections to Fixed Target Moller Scattering Including Hard Bremsstrahlung Effects
We present a calculation of the complete electroweak radiative
corrections to the Moller scattering process e^-e^- -> e^-e^-, including hard
bremsstrahlung contributions. We study the effects of these corrections on both
the total cross section and polarization asymmetry measured in low energy fixed
target experiments. Numerical results are presented for the experimental cuts
relevant for E-158, a fixed target e^-e^- experiment being performed at SLAC;
the effect of hard bremsstrahlung is to shift the measured polarization
asymmetry by approximately +4%. We briefly discuss the remaining theoretical
uncertainty in the prediction for the low energy Moller scattering polarization
asymmetry.Comment: 22 pgs; minor clarifications added and typos fixe
Supercurrents through gated superconductor-normal-metal-superconductor contacts: the Josephson-transistor
We analyze the transport through a narrow ballistic superconductor-normal-
metal-superconductor Josephson contact with non-ideal transmission at the
superconductor-normal-metal interfaces, e.g., due to insulating layers,
effective mass steps, or band misfits (SIN interfaces). The electronic spectrum
in the normal wire is determined through the combination of Andreev- and normal
reflection at the SIN interfaces. Strong normal scattering at the SIN
interfaces introduces electron- and hole-like resonances in the normal region
which show up in the quasi-particle spectrum. These resonances have strong
implications for the critical supercurrent which we find to be determined
by the lowest quasi-particle level: tuning the potential to the
points where electron- and hole-like resonances cross, we find sharp peaks in
, resulting in a transitor effect. We compare the performance of
this Resonant Josephson-Transistor (RJT) with that of a Superconducting Single
Electron Transistor (SSET).Comment: to appear in PRB, 11 pages, 9 figure
QED Radiative Corrections in Processes of Exclusive Pion Electroproduction
Formalism for radiative correction (RC) calculation in exclusive pion
electroproduction on the proton is presented. A FORTRAN code EXCLURAD is
developed for the RC procedure. The numerical analysis is done in the
kinematics of current Jefferson Lab experiments.Comment: 13 pages, 9 figures; requires RevTeX