1,186 research outputs found

    Surface Tension between Kaon Condensate and Normal Nuclear Matter Phase

    Full text link
    We calculate for the first time the surface tension and curvature coefficient of a first order phase transition between two possible phases of cold nuclear matter, a normal nuclear matter phase in equilibrium with a kaon condensed phase, at densities a few times the saturation density. We find the surface tension is proportional to the difference in energy density between the two phases squared. Furthermore, we show the consequences for the geometrical structures of the mixed phase region in a neutron star.Comment: 7 pages, 5 figures (Latex

    Gauge Invariant Variational Approach with Fermions: the Schwinger Model

    Get PDF
    We extend the gauge invariant variational approach of Phys. Rev. D52 (1995) 3719, hep-th/9408081, to theories with fermions. As the simplest example we consider the massless Schwinger model in 1+1 dimensions. We show that in this solvable model the simple variational calculation gives exact results.Comment: 14 pages, 1 figur

    Asymptotic normalization coefficients for 8B->7Be+p from a study of 8Li->7Li+n

    Get PDF
    Asymptotic normalization coefficients (ANCs) for 8Li->7Li+n have been extracted from the neutron transfer reaction 13C(7Li,8Li)12C at 63 MeV. These are related to the ANCs in 8B->7Be+p using charge symmetry. We extract ANCs for 8B that are in very good agreement with those inferred from proton transfer and breakup experiments. We have also separated the contributions from the p_1/2 and p_3/2 components in the transfer. We find the astrophysical factor for the 7Be(p,gamma)8B reaction to be S_17(0)=17.6+/-1.7 eVb. This is the first time that the rate of a direct capture reaction of astrophysical interest has been determined through a measurement of the ANCs in the mirror system.Comment: 5 pages, 3 figures, 2 table

    The Structure of Screening in QED

    Get PDF
    The possibility of constructing charged particles in gauge theories has long been the subject of debate. In the context of QED we have shown how to construct operators which have a particle description. In this paper we further support this programme by showing how the screening interactions arise between these charges. Unexpectedly we see that there are two different gauge invariant contributions with opposite signs. Their difference gives the expected result.Comment: 8 pages, LaTe

    Negative Kaons in Dense Baryonic Matter

    Get PDF
    Kaon polarization operator in dense baryonic matter of arbitrary isotopic composition is calculated including s- and p-wave kaon-baryon interactions. The regular part of the polarization operator is extracted from the realistic kaon-nucleon interaction based on the chiral and 1/N_c expansion. Contributions of the Lambda(1116), Sigma(1195), Sigma*(1385) resonances are taken explicitly into account in the pole and regular terms with inclusion of mean-field potentials. The baryon-baryon correlations are incorporated and fluctuation contributions are estimated. Results are applied for K- in neutron star matter. Within our model a second-order phase transition to the s-wave K- condensate state occurs at rho_c \gsim 4 \rho_0 once the baryon-baryon correlations are included. We show that the second-order phase transition to the p-wave KK^- condensate state may occur at densities ρc3÷5ρ0\rho_c \sim 3\div 5 \rho_0 in dependence on the parameter choice. We demonstrate that a first-order phase transition to a proton-enriched (approximately isospin-symmetric) nucleon matter with a p-wave K- condensate can occur at smaller densities, \rho\lsim 2 \rho_0. The transition is accompanied by the suppression of hyperon concentrations.Comment: 41 pages, 24 figures, revtex4 styl

    A QCD Analysis of the Mass Structure of the Nucleon

    Get PDF
    {}From the deep-inelastic momentum sum rule and the trace anomaly of the energy-momentum tensor, I derive a separation of the nucleon mass into the contributions of the quark and gluon kinetic and potential energies, the quark masses, and the trace anomaly.Comment: 9 pages, MIT-CTP #2368, revtex with 1 tabl

    Rapid cooling of magnetized neutron stars

    Get PDF
    The neutrino emissivities resulting from direct URCA processes in neutron stars are calculated in a relativistic Dirac-Hartree approach in presence of a magnetic field. In a quark or a hyperon matter environment, the emissivity due to nucleon direct URCA processes is suppressed relative to that from pure nuclear matter. In all the cases studied, the magnetic field enhances emissivity compared to the field-free cases.Comment: 9 pages; Revtex; figure include

    Antiflow of kaons in relativistic heavy ion collisions

    Get PDF
    We compare relativistic transport model calculations to recent data on the sideward flow of neutral strange K^0_s mesons for Au+Au collisions at 6 AGeV. A soft nuclear equation of state is found to describe very well the positive proton flow data measured in the same experiment. In the absence of kaon potential, the K^0 flow pattern is similar to that of protons. The kaon flow becomes negative if a repulsive kaon potential determined from the impulse approximation is introduced. However, this potential underestimates the data which exhibits larger antiflow. An excellent agreement with the data is obtained when a relativistic scalar-vector kaon potential, that has stronger density dependence, is used. We further find that the transverse momentum dependence of directed and elliptic flow is quite sensitive to the kaon potential in dense matter.Comment: 5 pages, Revtex, 4 figure

    Dynamical measure and field theory models free of the cosmological constant problem

    Get PDF
    Summary of abstract Field theory models including gauge theories with SSB are presented where the energy density of the true vacuum state (TVS) is zero without fine tuning. The above models are constructed in the gravitational theory where a measure of integration \Phi in the action is not necessarily \sqrt{-g} but it is determined dynamically through additional degrees of freedom. The ratio \Phi/\sqrt{-g} is a scalar field which can be solved in terms of the matter degrees of freedom due to the existence of a constraint. We study a few explicit field theory models where it is possible to combine the solution of the cosmological constant problem with: 1) possibility for inflationary scenario for the early universe; 2) spontaneously broken gauge unified theories (including fermions). The models are free from the well known problem of the usual scalar-tensor theories in what is concerned with the classical GR tests. The only difference of the field equations in the Einstein frame from the canonical equations of the selfconsistent system of Einstein's gravity and matter fields, is the appearance of the effective scalar field potential which vanishes in TVS without fine tuning.Comment: Extended version of the contribution to the fourth Alexander Friedmann International Seminar on Gravitation and Cosmology; accepted for publication in Phys. Rev. D; 31 page
    corecore