27 research outputs found
Effect of time to diagnostic testing for breast, cervical, and colorectal cancer screening abnormalities on screening efficacy: A modeling study
Background: Patients who receive an abnormal cancer screening result require follow-up for diagnostic testing, but the time to follow-up varies across patients and practices. Methods: We used a simulation study to estimate the change in lifetime screening benefits when time to follow-up for breast, cervical, and colorectal cancers was increased. Estimates were based on four independently developed microsimulation models that each simulated the life course of adults eligible for breast (women ages 50–74 years), cervical (women ages 21–65 years), or colorectal (adults ages 50–75 years) cancer screening. We assumed screening based on biennial mammography for breast cancer, triennial Papanicolaou testing for cervical cancer, and annual fecal immunochemical testing for colorectal cancer. For each cancer type, we simulated diagnostic testing immediately and at 3, 6, and 12 months after an abnormal screening exam. Results: We found declines in screening benefit with longer times to diagnostic testing, particularly for breast cancer screening. Compared to immediate diagnostic testing, testing at 3 months resulted in reduced screening benefit, with fewer undiscounted life years gained per 1,000 screened (breast: 17.3%, cervical: 0.8%, colorectal: 2.0% and 2.7%, from two colorectal cancer models), fewer cancers prevented (cervical: 1.4% fewer, colorectal: 0.5% and 1.7% fewer, respectively), and, for breast and colorectal cancer, a less favorable stage distribution. Conclusions: Longer times to diagnostic testing after an abnormal screening test can decrease screening effectiveness, but the impact varies substantially by cancer type. Impact: Understanding the impact of time to diagnostic testing on screening effectiveness can help inform quality improvement efforts. Cancer Epidemiol Biomarkers Prev; 27(2); 158–64. 2017 AACR
Meta-analysis of Genome-Wide Association Studies for Extraversion: Findings from the Genetics of Personality Consortium
Extraversion is a relatively stable and heritable personality trait associated with numerous psychosocial, lifestyle and health outcomes. Despite its substantial heritability, no genetic variants have been detected in previous genome-wide association (GWA) studies, which may be due to relatively small sample sizes of those studies. Here, we report on a large meta-analysis of GWA studies for extraversion in 63,030 subjects in 29 cohorts. Extraversion item data from multiple personality inventories were harmonized across inventories and cohorts. No genome-wide significant associations were found at the single nucleotide polymorphism (SNP) level but there was one significant hit at the gene level for a long non-coding RNA site (LOC101928162). Genome-wide complex trait analysis in two large cohorts showed that the additive variance explained by common SNPs was not significantly different from zero, but polygenic risk scores, weighted using linkage information, significantly predicted extraversion scores in an independent cohort. These results show that extraversion is a highly polygenic personality trait, with an architecture possibly different from other complex human traits, including other personality traits. Future studies are required to further determine which genetic variants, by what modes of gene action, constitute the heritable nature of extraversion
Tailoring breast cancer screening intervals by breast density and risk for women aged 50 years or older: Collaborative modeling of screening outcomes
Background: Biennial screening is generally recommended for average-risk women aged 50 to 74 years, but tailored screening may provide greater benefits. Objective: To estimate outcomes for various screening intervals after age 50 year
Benefits, harms, and costs for breast cancer screening after US implementation of digital mammography
Background Compared with film, digital mammography has superior sensitivity but lower specificity for women aged 40 to 49 years and women with dense breasts. Digital has replaced film in virtually all US facilities, but overall population health and cost from use of this technology are unclear. Methods Using five independent models, we compared digital screening strategies starting at age 40 or 50 years applied annually, biennially, or based on density with biennial film screening from ages 50 to 74 years and with no screening. Common data elements included cancer incidence and test performance, both modified by breast density. Lifetime outcomes included mortality, quality-adjusted life-years, and screening and treatment costs. Results For every 1000 women screened biennially from age 50 to 74 years, switching to digital from film yielded a median within-model improvement of 2 life-years, 0.27 additional deaths averted, 220 additional false-positive results, and 5.26 million per 1000 women, in part because of higher numbers of screens and false positives, and were not efficient or cost-effective. Conclusions The transition to digital breast cancer screening in the United States increased total costs for small added health benefits. The value of digital mammography screening among women aged 40 to 49 years depends on women's preferences regarding false positives
Collaborative modeling of the benefits and harms associated with different U.S. Breast cancer screening strategies
Background: Controversy persists about optimal mammography screening strategies. Objective: To evaluate screening outcomes, taking into account advances in mammography and treatment of breast cancer. Design: Collaboration of 6 simulation models using national data on incidence, digital mammography performance, treatment effects, and other-cause mortality. Setting: United States. Patients: Average-risk U.S. female population and subgroups with varying risk, breast density, or comorbidity. Intervention: Eight strategies differing by age at which screening starts (40, 45, or 50 years) and screening interval (annual, biennial, and hybrid [annual for women in their 40s and biennial thereafter]). All strategies assumed 100% adherence and stopped at age 74 years. Measurements: Benefits (breast cancer-specific mortality reduction, breast cancer deaths averted, life-years, and qualityadjusted life-years); number of mammograms used; harms (false-positive results, benign biopsies, and overdiagnosis); and ratios of harms (or use) and benefits (efficiency) per 1000 screens. Results: Biennial strategies were consistently the most efficient for average-risk women. Biennial screening from age 50 to 74 years avoided a median of 7 breast cancer deaths versus no screening; annual screening from age 40 to 74 years avoided an additional 3 deaths, but yielded 1988 more false-positive results and 11 more overdiagnoses per 1000 women screened. Annual screening from age 50 to 74 years was inefficient (similar bene-fits, but more harms than other strategies). For groups with a 2-to 4-fold increased risk, annual screening from age 40 years had similar harms and benefits as screening average-risk women biennially from 50 to 74 years. For groups with moderate or severe comorbidity, screening could stop at age 66 to 68 years. Limitation: Other imaging technologies, polygenic risk, and nonadherence were not considered. Conclusion: Biennial screening for breast cancer is efficient for average-risk populations. Decisions about starting ages and intervals will depend on population characteristics and the decision makers' weight given to the harms and benefits of screening