10 research outputs found

    The design, implementation, and performance of the LZ calibration systems

    Get PDF
    LUX-ZEPLIN (LZ) is a tonne-scale experiment searching for direct dark matter interactions and other rare events. It is located at the Sanford Underground Research Facility (SURF) in Lead, South Dakota, USA. The core of the LZ detector is a dual-phase xenon time projection chamber (TPC), designed with the primary goal of detecting Weakly Interacting Massive Particles (WIMPs) via their induced low energy nuclear recoils. Surrounding the TPC, two veto detectors immersed in an ultra-pure water tank enable reducing background events to enhance the discovery potential. Intricate calibration systems are purposely designed to precisely understand the responses of these three detector volumes to various types of particle interactions and to demonstrate LZ's ability to discriminate between signals and backgrounds. In this paper, we present a comprehensive discussion of the key features, requirements, and performance of the LZ calibration systems, which play a crucial role in enabling LZ's WIMP-search and its broad science program. The thorough description of these calibration systems, with an emphasis on their novel aspects, is valuable for future calibration efforts in direct dark matter and other rare-event search experiments

    New constraints on ultraheavy dark matter from the LZ experiment

    Get PDF
    Searches for dark matter with liquid xenon time projection chamber experiments have traditionally focused on the region of the parameter space that is characteristic of weakly interacting massive particles, ranging from a few GeV/c2 to a few TeV/c2. Models of dark matter with a mass much heavier than this are well motivated by early production mechanisms different from the standard thermal freeze-out, but they have generally been less explored experimentally. In this work, we present a reanalysis of the first science run of the LZ experiment, with an exposure of 0.9  tonne×yr, to search for ultraheavy particle dark matter. The signal topology consists of multiple energy deposits in the active region of the detector forming a straight line, from which the velocity of the incoming particle can be reconstructed on an event-by-event basis. Zero events with this topology were observed after applying the data selection calibrated on a simulated sample of signal-like events. New experimental constraints are derived, which rule out previously unexplored regions of the dark matter parameter space of spin-independent interactions beyond a mass of 1017  GeV/c2. Published by the American Physical Society 2024 </jats:sec

    Rights and responsibilities of individuals participating in medical research

    Full text link
    Current geophysical knowledge of the planet Mercury is based upon observations from ground-based astronomy and flybys of the Mariner 10 spacecraft, along with theoretical and computational studies. Mercury has the highest uncompressed density of the terrestrial planets and by implication has a metallic core with a radius approximately 75% of the planetary radius. Mercury’s spin rate is stably locked at 1.5 times the orbital mean motion. Capture into this state is the natural result of tidal evolution if this is the only dissipative process affecting the spin, but the capture probability is enhanced if Mercury’s core were molten at the time of capture. The discovery of Mercury’s magnetic field by Mariner 10 suggests the possibility that the core is partially molten to the present, a result that is surprising given the planet’s size and a surface crater density indicative of early cessation of significant volcanic activity. A present-day liquid outer core within Mercury would require either a core sulfur content of at least several weight percent or an unusual history of heat loss from the planet’s core and silicate fraction. A crustal remanent contribution to Mercury’s observed magnetic field cannot be ruled out on the basis of current knowledge. Measurements from the MESSENGER orbiter, in combination with continued ground-based observations, hold the promise of setting on a firmer basis our understanding of the structure and evolution of Mercury’s interior and the relationship of that evolution to the planet’s geological history

    The Geology of Mercury: The View Prior to the MESSENGER Mission

    Full text link

    Crystal Engineering to Design of Solids: From Single to Multicomponent Organic Materials

    Full text link

    Accelerated surgery versus standard care in hip fracture (HIP ATTACK) : an international, randomised, controlled trial

    Full text link
    Background: Observational studies have suggested that accelerated surgery is associated with improved outcomes in patients with a hip fracture. The HIP ATTACK trial assessed whether accelerated surgery could reduce mortality and major complications. Methods: HIP ATTACK was an international, randomised, controlled trial done at 69 hospitals in 17 countries. Patients with a hip fracture that required surgery and were aged 45 years or older were eligible. Research personnel randomly assigned patients (1:1) through a central computerised randomisation system using randomly varying block sizes to either accelerated surgery (goal of surgery within 6 h of diagnosis) or standard care. The coprimary outcomes were mortality and a composite of major complications (ie, mortality and non-fatal myocardial infarction, stroke, venous thromboembolism, sepsis, pneumonia, life-threatening bleeding, and major bleeding) at 90 days after randomisation. Patients, health-care providers, and study staff were aware of treatment assignment, but outcome adjudicators were masked to treatment allocation. Patients were analysed according to the intention-to-treat principle. This study is registered at ClinicalTrials.gov (NCT02027896). Findings: Between March 14, 2014, and May 24, 2019, 27 701 patients were screened, of whom 7780 were eligible. 2970 of these were enrolled and randomly assigned to receive accelerated surgery (n=1487) or standard care (n=1483). The median time from hip fracture diagnosis to surgery was 6 h (IQR 4\u20139) in the accelerated-surgery group and 24 h (10\u201342) in the standard-care group (p&lt;0\ub70001). 140 (9%) patients assigned to accelerated surgery and 154 (10%) assigned to standard care died, with a hazard ratio (HR) of 0\ub791 (95% CI 0\ub772 to 1\ub714) and absolute risk reduction (ARR) of 1% ( 121 to 3; p=0\ub740). Major complications occurred in 321 (22%) patients assigned to accelerated surgery and 331 (22%) assigned to standard care, with an HR of 0\ub797 (0\ub783 to 1\ub713) and an ARR of 1% ( 122 to 4; p=0\ub771). Interpretation: Among patients with a hip fracture, accelerated surgery did not significantly lower the risk of mortality or a composite of major complications compared with standard care. Funding: Canadian Institutes of Health Research

    Paleozoic orogens in New England, USA

    Full text link

    Annual Selected Bibliography

    Full text link
    corecore