18 research outputs found
Ascomycetous yeast species recovered from grapes damaged by honeydew and sour rot
Aims: To identify ascomycetous yeasts recovered from sound and damaged
grapes by the presence of honeydew or sour rot.
Methods and Results: In sound grapes, the mean yeast counts ranged from
3.20 ± 1.04 log CFU g-1 to 5.87 ± 0.64 log CFU g-1. In honeydew grapes, the
mean counts ranged from 3.88 ± 0.80 log CFU g-1 to 6.64 ± 0.77 log CFU g-1.
In sour rot grapes counts varied between 6.34 ± 1.03 and 7.68 ± 0.38 log
CFU g-1. Hanseniaspora uvarum was the most frequent species from sound
samples. In both types of damage, the most frequent species were Candida vanderwaltii,
H. uvarum and Zygoascus hellenicus. The latter species was recovered
in high frequency because of the utilization of the selective medium DBDM
(Dekkera ⁄ Brettanomyces differential medium). The scarce isolation frequency of
the wine spoilage species Zygosaccharomyces bailii (in sour rotten grapes) and
Zygosaccharomyces bisporus (in honeydew affected grapes) could only be
demonstrated by the use of the selective medium ZDM (Zygosaccharomyces
differential medium).
Conclusions: The isolation of several species only from damaged grapes indicates
that damage constituted the main factor determining yeast diversity. The
utilization of selective media is required for eliciting the recovery of potentially
wine spoilage species.
Significance and Impact of the Study: The impact of damaged grapes in the yeast ecology of grapes has been underestimate
The direct measurement of bacterial growth in biofilms of emergent plants (Schoenoplectus) of an artificial wetland
In the wastewater industry, artificial wetlands are used to improve water quality. Biofilms on these plant surfaces are thought to retain most of the active bacterial community that decomposes organic matter and aid in nutrient removal. Wetland design and operation could be enhanced with the in situ measurement of growth and dynamics of the biofilm-bacteria. This paper describes how to directly measure the rate of bacterial growth on the surface of submerged sections of emergent macrophytes, with the radioactively labelled DNA precursor [methyl-H] thymidine. We found that the isotope was rapidly and efficiently incorporated into the bacteria growing on plant surfaces, without a lag phase. Isotope dilution was avoided by using a specific activity of 2 Ci.mmol. Highest growth rates appeared to be associated with the top 10 mm of submerged plant tissue. The method accommodated the natural heterogeneity of biofilms both between plants and along the stem of the same plant. These findings are important for future studies of biofilm dynamics
Particle dispersion for further Cryptosporidium and Giardia detection by flow cytometry
Aims: The aim of this study was to overcome the analytical problems encountered during the detection of protozoans by flow cytometry resulting from particle compaction. Methods and Results: Malvern Mastersizer (Malvern Instruments, Malvern, UK) was used to characterize the particle distribution of four different water samples and/or particle concentrates incubated with (i) low ionic strength solution or sequestring agent, (ii) anionic or non-ionic surfactants (iii) industry detergent formulations and (iv) physical treatment. The recovery of oocysts and cysts in seeded and treated particle concentrates was estimated by cytometry and microscopy. The decrease in ionic strength of the aqueous solution was most efficient in particle dispersion for different types of water. Moreover, samples treated with deionized water or tetrasodium pyrophosphate showed the highest recovery with more than 80% of the oocysts and cysts recovered. Conclusions: Chemical treatments that act by altering the ionic strength of the medium are the most efficient for all water types tested here but the overall detergency performance cannot be predicted for all water types. Significance and Impact of the Study: Flow cytometric detection has been replaced largely by immunomagnetic separation but the data recorded still have relevance in this technique as well as in molecular techniques requiring DNA or RNA extraction
Occurrence of N-nitrosamines in Alberta public drinking-water distribution systems
Since the 1974 discovery of trihalomethanes as disinfection by-products (DBPs) in drinking water, the regulatory and public health focus has been primarily directed at halogenated compounds, even though it is well established that chlorination and chloramination also produce non-halogenated DBPs. Specific halogenated DBPs that could reasonably explain the correlation of some adverse health outcomes with consumption of disinfected drinking water in a number of epidemiologic studies have yet to be identified. We therefore explored an emerging class of non-halogenated DBPs, N-nitrosamines, which warrant consideration given public health concerns regarding possible correlations of bladder cancer with exposure to chlorinated drinking water. We developed a dual media (Ambersorb® 572 and LiChrolut® EN), off-line, solid-phase extraction method that utilized a modified commercially-available extraction manifold combined with our previous GC–MS ammonia positive chemical ionization (PCI) quantitative method for analyzing N-nitrosamines in drinking water. We surveyed 20 Alberta municipal drinking-water distribution systems for the presence of N-nitrosodimethylamine (NDMA) and seven other N-nitrosamine species. Analytical results revealed the occurrence of NDMA (up to 100 ng/L) as well as two other N-nitrosamines (N-nitrosopyrrolidine and N-nitrosomorpholine) within select Alberta drinking water supplies.Key words: Alberta, chloramination, disinfection by-products, distribution system, drinking water, N-nitrosamines, NDMA, public health, survey