120 research outputs found
Magnetic Fields In Astrophysical Objects
Magnetic fields are known to reside in many astrophysical objects and are now
believed to be crucially important for the creation of phenomena on a wide
variety of scales. However, the role of the magnetic field in the bodies that
we observe has not always been clear. In certain situations, the importance of
a magnetic field has been over looked on the grounds that the large-scale
magnetic field was believed to be too weak to play and important role in the
dynamics.
In this article I discuss some of the recent developments concerning magnetic
fields in stars, planets and accretion discs. I choose to emphasise some of the
situations where it has been suggested that weak magnetic fields may play a
more significant role than previously thought. At the end of the article I list
some of the questions to be answered in the future.Comment: 11 pages, 5 figures, to appear in Phil. Trans.
Linkage between Accretion Disks and Blazars
The magnetic field in an accretion disk is estimated assuming that all of the
angular momentum within prescribed accretion disk radii is removed by a jet.
The magnetic field estimated at the base of the jet is extrapolated to the
blazar emission region using a model for a relativistic axisymmetric jet
combined with some simplifying assumptions based on the relativistic nature of
the flow. The extrapolated magnetic field is compared with estimates based upon
the synchrotron and inverse Compton emission from three blazars, MKN 501, MKN
421 and PKS 2155-304. The magnetic fields evaluated from pure synchrotron self-
Compton models are inconsistent with the magnetic fields extrapolated in this
way. However, in two cases inverse Compton models in which a substantial part
of the soft photon field is generated locally agree well, mainly because these
models imply magnetic field strengths which are closer to being consistent with
Poynting flux dominated jets. This comparison is based on estimating the mass
accretion rate from the jet energy flux. Further comparisons along these lines
will be facilitated by independent estimates of the mass accretion rate in
blazars and by more detailed models for jet propagation near the black hole.Comment: Submiteed to the Astrophysics & Space Science special issue on the
5th Stromlo Symposiu
From Quasars to Extraordinary N-body Problems
We outline reasoning that led to the current theory of quasars and look at
George Contopoulos's place in the long history of the N-body problem. Following
Newton we find new exactly soluble N-body problems with multibody forces and
give a strange eternally pulsating system that in its other degrees of freedom
reaches statistical equilibrium.Comment: 13 pages, LaTeX with 1 postscript figure included. To appear in
Proceedings of New York Academy of Sciences, 13th Florida Workshop in
Nonlinear Astronomy and Physic
Two-flow magnetohydrodynamical jets around young stellar objects
We present the first-ever simulations of non-ideal magnetohydrodynamical
(MHD) stellar winds coupled with disc-driven jets where the resistive and
viscous accretion disc is self-consistently described. The transmagnetosonic,
collimated MHD outflows are investigated numerically using the VAC code. Our
simulations show that the inner outflow is accelerated from the central object
hot corona thanks to both the thermal pressure and the Lorentz force. In our
framework, the thermal acceleration is sustained by the heating produced by the
dissipated magnetic energy due to the turbulence. Conversely, the outflow
launched from the resistive accretion disc is mainly accelerated by the
magneto-centrifugal force. We also show that when a dense inner stellar wind
occurs, the resulting disc-driven jet have a different structure, namely a
magnetic structure where poloidal magnetic field lines are more inclined
because of the pressure caused by the stellar wind. This modification leads to
both an enhanced mass ejection rate in the disc-driven jet and a larger radial
extension which is in better agreement with the observations besides being more
consistent.Comment: Accepted for publication in Astrophysics & Space Science. Referred
proceeding of the fifth Mont Stromlo Symposium Dec. 1-8 2006, Canberra,
Australia. 5 pages, 3 figures. For high resolution version of the paper,
please click here http://www.apc.univ-paris7.fr/~fcasse/publications.htm
Rotating black hole orbit functionals in the frequency domain
In many astrophysical problems, it is important to understand the behavior of
functions that come from rotating (Kerr) black hole orbits. It can be
particularly useful to work with the frequency domain representation of those
functions, in order to bring out their harmonic dependence upon the fundamental
orbital frequencies of Kerr black holes. Although, as has recently been shown
by W. Schmidt, such a frequency domain representation must exist, the coupled
nature of a black hole orbit's and motions makes it difficult to
construct such a representation in practice. Combining Schmidt's description
with a clever choice of timelike coordinate suggested by Y. Mino, we have
developed a simple procedure that sidesteps this difficulty. One first Fourier
expands all quantities using Mino's time coordinate . In particular,
the observer's time is decomposed with . The frequency domain
description is then built from the -Fourier expansion and the
expansion of . We have found this procedure to be quite simple to implement,
and to be applicable to a wide class of functionals. We test the procedure
using a simple test function, and then apply it in a particularly interesting
case, the Weyl curvature scalar used in black hole perturbation
theory.Comment: 16 pages, 2 figures. Submitted to Phys Rev D. New version gives a
vastly improved algorithm due to Drasco for computing the Fourier transforms.
Drasco has been added as an author. Also fixed some references and
exterminated a small herd of typos; final published versio
Polarization of AGN in UV Spectral Range
We present the review of some new problems in cosmology and physics of stars
in connection with future launching of WSO. We discuss three problems. UV
observations of distant z > 6 quasars allow to obtain information on the soft <
1 KeV X-ray radiation of the accretion disk around a supermassive black hole
because of its cosmological redshift. Really the region of X-ray radiation is
insufficiently investigated because of high galactic absorption. In a result
one will get important information on the reionization zone of the Universe.
Astronomers from ESO revealed the effect of alignment of electric vectors of
polarized QSOs. One of the probable mechanism of such alignment is the
conversion of QSO radiation into low mass pseudoscalar particles (axions) in
the extragalactic magnetic field. These boson like particles have been
predicted by new SUSY particle physics theory. Since the probability of such
conversion is increasing namely in UV spectral range one can expect the strong
correlation between UV spectral energy distribution of QSO radiation and
polarimetric data in the optical range. In the stellar physics one of the
interesting problems is the origin of the X-ray sources with super Eddington
luminosities. The results of UV observations of these X-ray sources will allow
to find the origin of these sources as accreting intermediate mass black holes.Comment: 6 pages, 3 figure
The role of Hall diffusion in the magnetically threaded thin accretion discs
We study role of the Hall diffusion in the magnetic star-disc interaction. In
a simplified steady state configuration, the total torque is calculated in
terms of the fastness parameter and a new term because of the Hall diffusion.
We show the total torque reduces as the Hall term becomes more significant.
Also, the critical fastness parameter (at which the total torque is zero)
reduces because of the Hall diffusion.Comment: Accepted for publication in Astrophysics and Space Scienc
Gap Formation in the Dust Layer of 3D Protoplanetary Disks
We numerically model the evolution of dust in a protoplanetary disk using a
two-phase (gas+dust) Smoothed Particle Hydrodynamics (SPH) code, which is
non-self-gravitating and locally isothermal. The code follows the three
dimensional distribution of dust in a protoplanetary disk as it interacts with
the gas via aerodynamic drag. In this work, we present the evolution of a disk
comprising 1% dust by mass in the presence of an embedded planet for two
different disk configurations: a small, minimum mass solar nebular (MMSN) disk
and a larger, more massive Classical T Tauri star (CTTS) disk. We then vary the
grain size and planetary mass to see how they effect the resulting disk
structure. We find that gap formation is much more rapid and striking in the
dust layer than in the gaseous disk and that a system with a given stellar,
disk and planetary mass will have a different appearance depending on the grain
size and that such differences will be detectable in the millimetre domain with
ALMA. For low mass planets in our MMSN models, a gap can open in the dust disk
while not in the gas disk. We also note that dust accumulates at the external
edge of the planetary gap and speculate that the presence of a planet in the
disk may facilitate the growth of planetesimals in this high density region.Comment: 5 page, 4 figures. Accepted for publication in Astrophysics & Space
Scienc
Resistive and magnetized accretion flows with convection
We considered the effects of convection on the radiatively inefficient
accretion flows (RIAF) in the presence of resistivity and toroidal magnetic
field. We discussed the effects of convection on transports of angular momentum
and energy. We established two cases for the resistive and magnetized RIAFs
with convection: assuming the convection parameter as a free parameter and
using mixing-length theory to calculate convection parameter. A self-similar
method was used to solve the integrated equations that govern the behavior of
the presented model. The solutions showed that the accretion and rotational
velocities decrease by adding the convection parameter, while the sound speed
increases. Moreover, by using mixing-length theory to calculate convection
parameter, we found that the convection can be important in RIAFs with magnetic
field and resistivity.Comment: 7 pages, 3 figures, accepted by Ap&S
Vertically Self-Gravitating ADAFs in the Presence of Toroidal Magnetic Field
Force due to the self-gravity of the disc in the vertical direction is
considered to study its possible effects on the structure of a magnetized
advection-dominated accretion disc. We present steady-sate self similar
solutions for the dynamical structure of such a type of the accretion flows.
Our solutions imply reduced thickness of the disc because of the self-gravity.
It also imply that the thickness of the disc will increase by adding the
magnetic field strength.Comment: Accepted for publication in Astrophysics and Space Science
- …