355 research outputs found
On slip pulses at a sheared frictional viscoelastic/ non deformable interface
We study the possibility for a semi-infinite block of linear viscoelastic
material, in homogeneous frictional contact with a non-deformable one, to slide
under shear via a periodic set of ``self-healing pulses'', i.e. a set of
drifting slip regions separated by stick ones. We show that, contrary to
existing experimental indications, such a mode of frictional sliding is
impossible for an interface obeying a simple local Coulomb law of solid
friction. We then discuss possible physical improvements of the friction model
which might open the possibility of such dynamics, among which slip weakening
of the friction coefficient, and stress the interest of developing systematic
experimental investigations of this question.Comment: 23 pages, 3 figures. submitted to PR
Determination of the high-twist contribution to the structure function
We extract the high-twist contribution to the neutrino-nucleon structure
function from the analysis of the data collected by
the IHEP-JINR Neutrino Detector in the runs with the focused neutrino beams at
the IHEP 70 GeV proton synchrotron. The analysis is performed within the
infrared renormalon (IRR) model of high twists in order to extract the
normalization parameter of the model. From the NLO QCD fit to our data we
obtained the value of the IRR model normalization parameter
. We
also obtained from a similar fit to the CCFR data. The average of both results is
.Comment: preprint IHEP-01-18, 7 pages, LATEX, 1 figure (EPS
Production Asymmetry Measurement of High Xt Hadrons in pp Collisions at 40 GeV
Single-spin asymmetries for hadrons have been measured in collisions of
transversely-polarized 40 GeV/c proton beam with an unpolarized liquid hydrogen
target. The asymmetries were measured for pi+-, K+-, protons and antiprotons,
produced in the central region (0.02 < Xf < 0.10 and 0.7 < Pt < 3.4 GeV/c).
Asymmetries for pi+-, K+- and antiprotons show within measurement errors the
linear dependence on Xt and change a sign near 0.37. For protons negative
asymmetry, independent of Xt has been found. The results are compared with
those of other experiments and SU(6) model predictions.Comment: 25 pages (Latex), 12 Postscript figure
Moments of Nucleon Light Cone Quark Distributions Calculated in Full Lattice QCD
Moments of the quark density, helicity, and transversity distributions are
calculated in unquenched lattice QCD. Calculations of proton matrix elements of
operators corresponding to these moments through the operator product expansion
have been performed on lattices for Wilson fermions at using configurations from the SESAM collaboration and at
using configurations from SCRI. One-loop perturbative renormalization
corrections are included. At quark masses accessible in present calculations,
there is no statistically significant difference between quenched and full QCD
results, indicating that the contributions of quark-antiquark excitations from
the Dirac Sea are small. Close agreement between calculations with cooled
configurations containing essentially only instantons and the full gluon
configurations indicates that quark zero modes associated with instantons play
a dominant role. Naive linear extrapolation of the full QCD calculation to the
physical pion mass yields results inconsistent with experiment. Extrapolation
to the chiral limit including the physics of the pion cloud can resolve this
discrepancy and the requirements for a definitive chiral extrapolation are
described.Comment: 53 Pages Revtex, 26 Figures, 9 Tables. Added additional reference and
updated referenced data in Table I
New hadrons as ultra-high energy cosmic rays
Ultra-high energy cosmic ray (UHECR) protons produced by uniformly
distributed astrophysical sources contradict the energy spectrum measured by
both the AGASA and HiRes experiments, assuming the small scale clustering of
UHECR observed by AGASA is caused by point-like sources. In that case, the
small number of sources leads to a sharp exponential cutoff at the energy
E<10^{20} eV in the UHECR spectrum. New hadrons with mass 1.5-3 GeV can solve
this cutoff problem. For the first time we discuss the production of such
hadrons in proton collisions with infrared/optical photons in astrophysical
sources. This production mechanism, in contrast to proton-proton collisions,
requires the acceleration of protons only to energies E<10^{21} eV. The diffuse
gamma-ray and neutrino fluxes in this model obey all existing experimental
limits. We predict large UHE neutrino fluxes well above the sensitivity of the
next generation of high-energy neutrino experiments. As an example we study
hadrons containing a light bottom squark. These models can be tested by
accelerator experiments, UHECR observatories and neutrino telescopes.Comment: 17 pages, revtex style; v2: shortened, as to appear in PR
Large enhancement of deuteron polarization with frequency modulated microwaves
We report a large enhancement of 1.7 in deuteron polarization up to values of
0.6 due to frequency modulation of the polarizing microwaves in a two liters
polarized target using the method of dynamic nuclear polarization. This target
was used during a deep inelastic polarized muon-deuteron scattering experiment
at CERN. Measurements of the electron paramagnetic resonance absorption spectra
show that frequency modulation gives rise to additional microwave absorption in
the spectral wings. Although these results are not understood theoretically,
they may provide a useful testing ground for the deeper understanding of
dynamic nuclear polarization.Comment: 10 pages, including the figures coming in uuencoded compressed tar
files in poltar.uu, which also brings cernart.sty and crna12.sty files neede
Spin asymmetry A_1^d and the spin-dependent structure function g_1^d of the deuteron at low values of x and Q^2
We present a precise measurement of the deuteron longitudinal spin asymmetry
A_1^d and of the deuteron spin-dependent structure function g_1^d at Q^2 < 1
GeV^2 and 4*10^-5 < x < 2.5*10^-2 based on the data collected by the COMPASS
experiment at CERN during the years 2002 and 2003. The statistical precision is
tenfold better than that of the previous measurement in this region. The
measured A_1^d and g_1^d are found to be consistent with zero in the whole
range of x.Comment: 17 pages, 10 figure
Measurement of the Spin Structure of the Deuteron in the DIS Region
We present a new measurement of the longitudinal spin asymmetry A_1^d and the
spin-dependent structure function g_1^d of the deuteron in the range 1 GeV^2 <
Q^2 < 100 GeV^2 and 0.004< x <0.7. The data were obtained by the COMPASS
experiment at CERN using a 160 GeV polarised muon beam and a large polarised
6-LiD target. The results are in agreement with those from previous experiments
and improve considerably the statistical accuracy in the region 0.004 < x <
0.03.Comment: 10 pages, 6 figures, subm. to PLB, revised: author list, Fig. 4,
details adde
Gluon polarization in the nucleon from quasi-real photoproduction of high-pT hadron pairs
We present a determination of the gluon polarization Delta G/G in the
nucleon, based on the helicity asymmetry of quasi-real photoproduction events,
Q^2<1(GeV/c)^2, with a pair of large transverse-momentum hadrons in the final
state. The data were obtained by the COMPASS experiment at CERN using a 160 GeV
polarized muon beam scattered on a polarized 6-LiD target. The helicity
asymmetry for the selected events is = 0.002 +- 0.019(stat.) +-
0.003(syst.). From this value, we obtain in a leading-order QCD analysis Delta
G/G=0.024 +- 0.089(stat.) +- 0.057(syst.) at x_g = 0.095 and mu^2 =~ 3
(GeV}/c)^2.Comment: 10 pages, 3 figure
The Deuteron Spin-dependent Structure Function g1d and its First Moment
We present a measurement of the deuteron spin-dependent structure function
g1d based on the data collected by the COMPASS experiment at CERN during the
years 2002-2004. The data provide an accurate evaluation for Gamma_1^d, the
first moment of g1d(x), and for the matrix element of the singlet axial
current, a0. The results of QCD fits in the next to leading order (NLO) on all
g1 deep inelastic scattering data are also presented. They provide two
solutions with the gluon spin distribution function Delta G positive or
negative, which describe the data equally well. In both cases, at Q^2 = 3
(GeV/c)^2 the first moment of Delta G is found to be of the order of 0.2 - 0.3
in absolute value.Comment: fits redone using MRST2004 instead of MRSV1998 for G(x), correlation
matrix adde
- …