6 research outputs found

    Reconstruction of Holocene environmental changes in North-Western Pacific in relation to paleorecord from Shikotan Island

    Get PDF
    Results of a paleolimnological investigation of a well-dated lake sediment section from Shikotan Island (Southern Kurils) showed that from ca 8.0 to 5.8 cal ka BP a warm and humid period corresponding to middle Holocene optimum took place. Cooling thereafter corresponds to Neoglacial. A reconstructed from ca 0.9 to ca 0.58 cal ka BP warm period can correspond to a Medieval Warm Period. Cooling after 0.58 cal ka BP can be correlated with the LIA. Marine regression stages were identified at ca 6.2–5.9, 5.5– 5.1 and 1.07–0.36 cal ka BP. The general chronology of major climatic events of Holocene in the island is in accordance with the climate records from the North Pacific region. Revealed spatial differences in timing and magnitude of the Late Holocene climatic episodes (LIA, MWP) in the region needs further investigations

    Reconstruction of Environmental Conditions in the Eastern Part of Primorsky Krai (Russian Far East) in the Late Holocene

    No full text
    Abstract: This paper examines a 115 cm long profile section of lacustrine-swamp sediments from the Langou I Bay (eastern part of Primorsky Krai; 44°25′10.16″ N, 135°54′26.08″ E). According to the produced age model, the sediments are 3900 years old. A multiproxy study involving geochemical, chironomid, diatom, and palynological analysis indicates that the climatic and environmental conditions on the seacoast in the eastern part of Primorsky Krai developed in many respects synchronously with known climatic phases of the Late Holocene. The period from ca. 4200 to 2600 cal years BP corresponds to the first and second warm stages of the Jōmon period and the late Jōmon transgression in Japan. The peak of summer temperatures in the vicinity of the Langou I Bay occurred between 2900 and 2600 cal years BP. The cooling that began after 2600 cal years BP was not as severe in the study area as in Japan (cold Jōmon and Kofun stages): the reconstructed temperatures were 1°C lower than now; in Japan, they were 2–3°C below the current level. The Medieval Climate Optimum (Nara–Heian–Kamakura stage in Japan) reconstructed for the eastern part of Primorsky Krai in the period from 1250 to 750 cal years BP featured a humid climate with summer temperatures ca. 1.5°C higher than at present. The period between 750 and 250 cal years BP correlates with the Little Ice Age: summer temperatures had dropped to 1.5–2°C below the modern one. In the last 200 years, the lake has been shallowing and has nearly dried out. This period is marked by temperature fluctuations amid the trend of climate warming

    The middle to Late Holocene environment on the Iturup Island (kurils, North Western Pacific)

    No full text
    The Kuril Islands stretch southwest from Kamchatka, Russia, to Hokkaido, Japan and separate the Sea of Okhotsk from the northern Pacific Ocean. A series of transgressions and regressions linked to variations in climatically affected global ice volume are among the most important drivers of Holocene environmental changes in the region. Despite a long research history, reconstructions of the Holocene palaeoenvironment are sparse with inconsistent interpretations, arising from insufficient dating control, different temporal resolutions, and specific local geographical features, such as high tectonic activity and the isolated nature of the area. We have investigated a 550 cm lake sediment section from Iturup Island, the largest among the Kuril Islands. The 6600 year old sediment section was studied using sedimentological, geochemical, chironomid, diatom, and pollen analyses to reconstruct environmental and climatic changes and sea level fluctuations (transgression – regression stages). During the warm late phase of the Middle Holocene (6600–4400 cal BP) an open bay or lagoon with shallow overgrown littorals existed at the sampling site. The cooling between 5600 and 4400 cal BP can be correlated with Neoglacial cooling. The cool period between 4200 and 3200 cal BP was a transition towards the formation of a freshwater lagoon and can be related to a decline of the Japan Late Jomon transgression (Sakaguchi, 1983). Between 3200 and 2800 cal BP the lagoon separated from the marine environment in response to a further sea level decrease during the Japan Latest Jomon cold stage and regression. The following increase in the share of broad-leaved pollen indicated a slight warming (Yayoi transition stage) that was interrupted by a short-term cooling spell between 1500 and 1400 cal BP (cold Japan Kofun stage). The period between ca 1100 and 800 cal BP can be related to the European Medieval Climate Anomaly (MCA) or relatively dry Japan Nara-Heian-Kamakura warm stage. The Little Ice Age cooling and Edo regression were evident after ca 800 cal BP. Modern warming however is not well seen in the investigated core

    Holocene evolution of a proglacial lake in southern Kamchatka, Russian Far East

    No full text
    The Kamchatka Peninsula (Russian Far East) remains among the least studied regions of eastern Asia. Recent studies revealed a high degree of palaeoenvironmental variability between different parts of the peninsula. We investigated semi-aquatic (chironomids) and terrestrial (leaf wax biomarkers) proxies from a sediment core collected from Lake Sokoch (southern Kamchatka) to provide reconstruction of the mean July air temperature and variations in limnic conditions. The lake formed after 10.0 cal. ka BP as a result of postglacial warming and was fed by glacial meltwaters from neighbouring glaciers. Our data show a later beginning of the Holocene thermal maximum (HTM) relative to more northern sites in Kamchatka, Siberia and Chukotka and support climate model experiments that suggest that the HTM was delayed in southern and central Kamchatka by about 2000 years compared with Alaska and NE Siberia. Warm conditions prevailed between 10.0 and 6.4 cal. ka BP with a short spell of cool and dry climate around 8.2 cal. ka BP that might be related to the 8.2 ka cooling event. The HTM took place between 6.5 and 3.4 cal. ka BP with the warmest phase from 6.0 to 5.0 cal. ka BP. An onset of Neoglacial cooling at 3.4 cal. ka BP is consistent with the strengthening of both the Siberian High and the Aleutian Low. Warming between 1.2 and 0.9 cal. ka BP can be attributed to the Mediaeval Climate Anomaly. The LIA cooling is related to another strengthening of the Siberian High and the Aleutian Low. The modern warming, though weakly traced in our record, is consistent with the recent meteorological observations. The presented palaeoenvironment record confirms the earlier findings of spatial differences within Kamchatka in timing and magnitude of the major Holocene climate fluctuations and contributes towards understanding the expression of Holocene climate change in Kamchatka

    Reconstruction of Holocene environmental changes in Southern Kurils (North-Western Pacific) based on palaeolake sediment proxies from Shikotan Island

    No full text
    We investigated a well-dated sediment section of a palaeolake situated in the coastal zone of Shikotan Island (Lesser Kurils) for organic sediment-geochemistry and biotic components (diatoms, chironomids, pollen) inorder to provide a reconstruction of the palaeoenvironmental changes and palaeo-events (tsunamis, sea-level fluctuations and landslides) in Holocene. During the ca 8000 years of sedimentation the changes in organic sediment-geochemistry and in composition of the diatoms and chironomids as well as the shifts in composition of terrestrial vegetation suggest that the period until ca 5800 cal yr BP was characterized by a warm and humid climate (corresponds to middle Holocene optimum) with climate cooling thereafter. A warm period reconstructed from ca 900 to at least ca 580 cal yr BP corresponds to a transition to a Nara-Heian-Kamakura warm stage and can be correlated to a Medieval Warm Period. After 580 cal yr PB, the lake gradually dried out and climatic signals could not be obtained from the declining lacustrine biological communities, but the increasing role of spruce and disappearance of the oak from the vegetation give evidences of the climate cooling that can be correlated with the LIA. The marine regression stages at the investigated site are identified for ca 6200–5900 (at the end of the middle Holocene transgression), ca 5500–5100 (Middle Jomon regression or Kemigawa regression), and ca 1070–360 cal yr BP (at the end of Heian transgression). The lithological structure of sediments and the diatom compositions give evidences for the multiple tsunami events of different strengths in the Island. Most remarkable of them can be dated at around ca 7000, 6460, 5750, 4800, 950 cal yr BP. The new results help to understand the Holocene environmental history of the Southern Kurils as a part of the Kuril-Kamchatka and Aleutian Marginal Sea-Island Arc Systems in the North-Western Pacific region

    Holocene records of paleoclimatic and paleoceanographic changes in the western arctic

    No full text
    corecore