61 research outputs found

    Singularities of Nonlinear Elliptic Systems

    Full text link
    Through Morrey's spaces (plus Zorko's spaces) and their potentials/capacities as well as Hausdorff contents/dimensions, this paper estimates the singular sets of nonlinear elliptic systems of the even-ordered Meyers-Elcrat type and a class of quadratic functionals inducing harmonic maps.Comment: 18 pages Communications in Partial Differential Equation

    Direct approach to the problem of strong local minima in Calculus of Variations

    Full text link
    The paper introduces a general strategy for identifying strong local minimizers of variational functionals. It is based on the idea that any variation of the integral functional can be evaluated directly in terms of the appropriate parameterized measures. We demonstrate our approach on a problem of W^{1,infinity} weak-* local minima--a slight weakening of the classical notion of strong local minima. We obtain the first quasiconvexity-based set of sufficient conditions for W^{1,infinity} weak-* local minima.Comment: 26 pages, no figure

    Stability estimates for resolvents, eigenvalues and eigenfunctions of elliptic operators on variable domains

    Full text link
    We consider general second order uniformly elliptic operators subject to homogeneous boundary conditions on open sets ϕ(Ω)\phi (\Omega) parametrized by Lipschitz homeomorphisms ϕ\phi defined on a fixed reference domain Ω\Omega. Given two open sets ϕ(Ω)\phi (\Omega), ϕ~(Ω)\tilde \phi (\Omega) we estimate the variation of resolvents, eigenvalues and eigenfunctions via the Sobolev norm ϕ~ϕW1,p(Ω)\|\tilde \phi -\phi \|_{W^{1,p}(\Omega)} for finite values of pp, under natural summability conditions on eigenfunctions and their gradients. We prove that such conditions are satisfied for a wide class of operators and open sets, including open sets with Lipschitz continuous boundaries. We apply these estimates to control the variation of the eigenvalues and eigenfunctions via the measure of the symmetric difference of the open sets. We also discuss an application to the stability of solutions to the Poisson problem.Comment: 34 pages. Minor changes in the introduction and the refercenes. Published in: Around the research of Vladimir Maz'ya II, pp23--60, Int. Math. Ser. (N.Y.), vol. 12, Springer, New York 201

    Vortex Rings in Fast Rotating Bose-Einstein Condensates

    Full text link
    When Bose-Eintein condensates are rotated sufficiently fast, a giant vortex phase appears, that is the condensate becomes annular with no vortices in the bulk but a macroscopic phase circulation around the central hole. In a former paper [M. Correggi, N. Rougerie, J. Yngvason, {\it arXiv:1005.0686}] we have studied this phenomenon by minimizing the two dimensional Gross-Pitaevskii energy on the unit disc. In particular we computed an upper bound to the critical speed for the transition to the giant vortex phase. In this paper we confirm that this upper bound is optimal by proving that if the rotation speed is taken slightly below the threshold there are vortices in the condensate. We prove that they gather along a particular circle on which they are evenly distributed. This is done by providing new upper and lower bounds to the GP energy.Comment: to appear in Archive of Rational Mechanics and Analysi

    A limit model for thermoelectric equations

    Full text link
    We analyze the asymptotic behavior corresponding to the arbitrary high conductivity of the heat in the thermoelectric devices. This work deals with a steady-state multidimensional thermistor problem, considering the Joule effect and both spatial and temperature dependent transport coefficients under some real boundary conditions in accordance with the Seebeck-Peltier-Thomson cross-effects. Our first purpose is that the existence of a weak solution holds true under minimal assumptions on the data, as in particular nonsmooth domains. Two existence results are studied under different assumptions on the electrical conductivity. Their proofs are based on a fixed point argument, compactness methods, and existence and regularity theory for elliptic scalar equations. The second purpose is to show the existence of a limit model illustrating the asymptotic situation.Comment: 20 page

    Quasiconvexity at the boundary and the nucleation of austenite

    Get PDF
    Motivated by experimental observations of H. Seiner et al., we study the nucleation of austenite in a single crystal of a CuAlNi shape-memory alloy stabilized as a single variant of martensite. In the experiments the nucleation process was induced by localized heating and it was observed that, regardless of where the localized heating was applied, the nucleation points were always located at one of the corners of the sample - a rectangular parallelepiped in the austenite. Using a simplified nonlinear elasticity model, we propose an explanation for the location of the nucleation points by showing that the martensite is a local minimizer of the energy with respect to localized variations in the interior, on faces and edges of the sample, but not at some corners, where a localized microstructure, involving austenite and a simple laminate of martensite, can lower the energy. The result for the interior, faces and edges is established by showing that the free-energy function satisfies a set of quasiconvexity conditions at the stabilized variant in the interior, faces and edges, respectively, provided the specimen is suitably cut

    Evaluation of the US COVID-19 Scenario Modeling Hub for informing pandemic response under uncertainty

    Get PDF
    Our ability to forecast epidemics far into the future is constrained by the many complexities of disease systems. Realistic longer-term projections may, however, be possible under well-defined scenarios that specify the future state of critical epidemic drivers. Since December 2020, the U.S. COVID-19 Scenario Modeling Hub (SMH) has convened multiple modeling teams to make months ahead projections of SARS-CoV-2 burden, totaling nearly 1.8 million national and state-level projections. Here, we find SMH performance varied widely as a function of both scenario validity and model calibration. We show scenarios remained close to reality for 22 weeks on average before the arrival of unanticipated SARS-CoV-2 variants invalidated key assumptions. An ensemble of participating models that preserved variation between models (using the linear opinion pool method) was consistently more reliable than any single model in periods of valid scenario assumptions, while projection interval coverage was near target levels. SMH projections were used to guide pandemic response, illustrating the value of collaborative hubs for longer-term scenario projections

    Bounded point evaluations and approximation in LP by analytic functions

    No full text
    corecore