61 research outputs found
Singularities of Nonlinear Elliptic Systems
Through Morrey's spaces (plus Zorko's spaces) and their potentials/capacities
as well as Hausdorff contents/dimensions, this paper estimates the singular
sets of nonlinear elliptic systems of the even-ordered Meyers-Elcrat type and a
class of quadratic functionals inducing harmonic maps.Comment: 18 pages Communications in Partial Differential Equation
Direct approach to the problem of strong local minima in Calculus of Variations
The paper introduces a general strategy for identifying strong local
minimizers of variational functionals. It is based on the idea that any
variation of the integral functional can be evaluated directly in terms of the
appropriate parameterized measures. We demonstrate our approach on a problem of
W^{1,infinity} weak-* local minima--a slight weakening of the classical notion
of strong local minima. We obtain the first quasiconvexity-based set of
sufficient conditions for W^{1,infinity} weak-* local minima.Comment: 26 pages, no figure
Stability estimates for resolvents, eigenvalues and eigenfunctions of elliptic operators on variable domains
We consider general second order uniformly elliptic operators subject to
homogeneous boundary conditions on open sets parametrized by
Lipschitz homeomorphisms defined on a fixed reference domain .
Given two open sets , we estimate the
variation of resolvents, eigenvalues and eigenfunctions via the Sobolev norm
for finite values of , under
natural summability conditions on eigenfunctions and their gradients. We prove
that such conditions are satisfied for a wide class of operators and open sets,
including open sets with Lipschitz continuous boundaries. We apply these
estimates to control the variation of the eigenvalues and eigenfunctions via
the measure of the symmetric difference of the open sets. We also discuss an
application to the stability of solutions to the Poisson problem.Comment: 34 pages. Minor changes in the introduction and the refercenes.
Published in: Around the research of Vladimir Maz'ya II, pp23--60, Int. Math.
Ser. (N.Y.), vol. 12, Springer, New York 201
Vortex Rings in Fast Rotating Bose-Einstein Condensates
When Bose-Eintein condensates are rotated sufficiently fast, a giant vortex
phase appears, that is the condensate becomes annular with no vortices in the
bulk but a macroscopic phase circulation around the central hole. In a former
paper [M. Correggi, N. Rougerie, J. Yngvason, {\it arXiv:1005.0686}] we have
studied this phenomenon by minimizing the two dimensional Gross-Pitaevskii
energy on the unit disc. In particular we computed an upper bound to the
critical speed for the transition to the giant vortex phase. In this paper we
confirm that this upper bound is optimal by proving that if the rotation speed
is taken slightly below the threshold there are vortices in the condensate. We
prove that they gather along a particular circle on which they are evenly
distributed. This is done by providing new upper and lower bounds to the GP
energy.Comment: to appear in Archive of Rational Mechanics and Analysi
A limit model for thermoelectric equations
We analyze the asymptotic behavior corresponding to the arbitrary high
conductivity of the heat in the thermoelectric devices. This work deals with a
steady-state multidimensional thermistor problem, considering the Joule effect
and both spatial and temperature dependent transport coefficients under some
real boundary conditions in accordance with the Seebeck-Peltier-Thomson
cross-effects. Our first purpose is that the existence of a weak solution holds
true under minimal assumptions on the data, as in particular nonsmooth domains.
Two existence results are studied under different assumptions on the electrical
conductivity. Their proofs are based on a fixed point argument, compactness
methods, and existence and regularity theory for elliptic scalar equations. The
second purpose is to show the existence of a limit model illustrating the
asymptotic situation.Comment: 20 page
Quasiconvexity at the boundary and the nucleation of austenite
Motivated by experimental observations of H. Seiner et al., we study the nucleation of austenite in a single crystal of a CuAlNi shape-memory alloy stabilized as a single variant of martensite. In the experiments the nucleation process was induced by localized heating and it was observed that, regardless of where the localized heating was applied, the nucleation points were always located at one of the corners of the sample - a rectangular parallelepiped in the austenite. Using a simplified nonlinear elasticity model, we propose an explanation for the location of the nucleation points by showing that the martensite is a local minimizer of the energy with respect to localized variations in the interior, on faces and edges of the sample, but not at some corners, where a localized microstructure, involving austenite and a simple laminate of martensite, can lower the energy. The result for the interior, faces and edges is established by showing that the free-energy function satisfies a set of quasiconvexity conditions at the stabilized variant in the interior, faces and edges, respectively, provided the specimen is suitably cut
Evaluation of the US COVID-19 Scenario Modeling Hub for informing pandemic response under uncertainty
Our ability to forecast epidemics far into the future is constrained by the many complexities of disease systems. Realistic longer-term projections may, however, be possible under well-defined scenarios that specify the future state of critical epidemic drivers. Since December 2020, the U.S. COVID-19 Scenario Modeling Hub (SMH) has convened multiple modeling teams to make months ahead projections of SARS-CoV-2 burden, totaling nearly 1.8 million national and state-level projections. Here, we find SMH performance varied widely as a function of both scenario validity and model calibration. We show scenarios remained close to reality for 22 weeks on average before the arrival of unanticipated SARS-CoV-2 variants invalidated key assumptions. An ensemble of participating models that preserved variation between models (using the linear opinion pool method) was consistently more reliable than any single model in periods of valid scenario assumptions, while projection interval coverage was near target levels. SMH projections were used to guide pandemic response, illustrating the value of collaborative hubs for longer-term scenario projections
- …