36 research outputs found
Observation Of A High-energy Cosmic-ray Family Caused By A Centauro-type Nuclear Interaction In The Joint Emulsion Chamber Experiment At The Pamirs
An exotic cosmic-ray family event is observed in the large emulsion chamber exposed by the joint at the Pamirs (4360 m above sea level). The family is composed of 120γ-ray-induced showers and 37 hadron-induced showers with individual visible energy exceeding 1 TeV. The decisive feature of the event is the hadron dominance: ΣEγ, ΣE(γ) h, 〈Eγ, 〈E(γ) h〉, 〈Eγ·Rγ〉 and 〈E(γ)·Rh〉 being 298 TeV, 476 TeV, 2.5 TeV, 12.9 TeV, 28.6 GeV m and 173 GeV m, respectively. Most probably the event is due to a Centauro interaction, which occured in the atmosphere at ∼700 m above the chamber. The event will constitute the second beautiful candidate for a Centauro observed at the Pamirs. © 1987.1901-2226233Bayburina, (1981) Nucl. Phys. B, 191, p. 1Lattes, Fujimoto, Hasegawa, Hadronic interactions of high energy cosmic-ray observed by emulsion chambers (1980) Physics Reports, 65, p. 151(1984) Trudy FIAN, 154, p. 1Borisov, (1984) Proc. Intern. Symp. on Cosmic rays and particle physics, p. 3. , TokyoRen, (1985) 19th Intern. Cosmic ray Conf., 6, p. 317. , La JollaYamashita, (1985) 19th Intern. Cosmic ray Conf., 6, p. 364. , La JollaTamada, (1977) Nuovo Cimento, 41 B, p. 245T. Shibata et al., to be publishedHillas, (1979) 16th Intern. Cosmic ray Conf., 6, p. 13. , KyotoBattiston, Measurement of the proton-antiproton elastic and total cross section at a centre-of-mass energy of 540 GeV (1982) Physics Letters B, 117, p. 126UA5 Collab., G.J. Alner et al., preprint CERN-EP/85-62Taylor, (1976) Phys. Rev. D, 14, p. 1217Burnett, (1984) Proc. Intern. Symp. on Cosmic rays and particle physics, p. 468. , Toky
Nuclear Interactions Of Super High Energy Cosmic-rays Observed In Mountain Emulsion Chambers
Here we present a summary of joint discussions on the results of three mountain experiments with large-scale emulsion chambers, at Pamir, Mt. Fuji and Chacaltaya. Observations cover gamma quanta, hadrons and their clusters (called "families"). The following topics are covered, concerning the characteristics of nuclear interactions the energy region 1014-1016 eV: (i) rapid dissipation seen in atmospheric diffusion of high-energy cosmic-rays; (ii) multiplicity and Pt increase in produced pi-mesons in the fragmentation region; (iii) existence of large-Pt jets, (iv) extremely hadron-rich family of the Centauro type; (v) exotic phenomena in the extremely high energy region beyond 1016 eV. © 1981.1911125(1977) Acta Univ. Lodz ser. II, (60)(1973) 13th Int. Cosmic-ray Conf., 3, p. 2228(1975) 14th Int. Cosmic-Ray Conf., 7, p. 2365(1979) AIP Conf. Proc. no. 49, p. 334(1979) 16th Int. Cosmic-ray Conf., 6, p. 344(1979) 16th Int. Cosmic-ray Conf., 7, p. 6816th Int. Cosmic-ray Conf. (1979) 16th Int. Cosmic-ray Conf., 7, p. 284(1979) 16th Int. Cosmic-ray Conf., 7, p. 294(1979) 16th Int. Cosmic-ray Conf., 13, p. 87(1979) 16th Int. Cosmic-ray Conf., 13, p. 92(1979) 16th Int. Cosmic-ray Conf., 13, p. 98(1979) AIP Conf. Proc. no. 49, p. 94(1979) AIP Conf. Proc. no. 49, p. 145(1979) AIP Conf. Proc. no. 49, p. 317(1979) 16th Int. Cosmic-ray Conf., 6, p. 350(1979) 16th Int. Cosmic-ray Conf., 6, p. 356(1979) 16th Int. Cosmic-ray Conf., 6, p. 362Nikolsky, Proc. 9th Int. High-energy Symp. (1978) CSSR, 21. , ToborMiyake, (1978) Proc. 19th Int. Conf. on High-energy physics, p. 433Vernov, (1977) Physica, 3, p. 1601Khristiansen, (1978) JETP Lett., 28, p. 124(1973) 13th Int. Cosmic-ray Conf., 3, p. 2219Izv. Acad. Nauk USSR, ser Phys. (1974) Izv. Acad. Nauk USSR, ser Phys., 38, p. 918(1975) 14th Int. Cosmic-ray Conf., 7, p. 2365(1979) 16th Int. Cosmic-ray Conf., 7, p. 68Dunaevsky, Urysson, Emelyanov, Shorin, Tashimov, (1975) FIAN preprint no. 150Dunaevsky, Urysson, Emelyanov, Shorin, Tashinov, (1979) Acta Univ. Lodz ser. II, (60), p. 199Ivanenko, Kanevskya, Roganova, (1978) JETP Lett., 40, p. 704Ivanenko, Kanevsky, Roganova, (1979) 16th Int. Cosmic-ray Conf., 7, p. 101Ivanenko, Kanevsky, Roganova, (1979) 16th Int. Cosmic-ray Conf., 7, p. 198Wrotniak, (1977) Acta Univ. Lodz ser. II, (60), p. 165Krys, Tomaszevski, Wrotniak, (1979) 16th Int. Cosmic-ray Conf., 7, p. 182Krys, Tomaszevski, Wrotniak, (1979) 16th Int. Cosmic-ray Conf., 7, p. 186Fomin, Kempa, Khristiansen, Levina, Piotrowska, Wdowczyk, (1977) 15th Int. Cosmic-ray Conf., 7, p. 248Fomin, Kempa, Khristiansen, Levina, Piotrowska, Wdowczyk, (1979) 16th Int. Cosmic-ray Conf., 13, p. 82Azimov, Mullazhanov, Yuldashbayev, (1979) 16th Int. Cosmic-ray Conf., 7, p. 262Azimov, Mullazhanov, Yuldashbayev, (1977) Acta Univ. Lodz ser. II, (60), p. 275Kasahara, Torri, Yuda, (1979) 16th Int. Cosmic-ray Conf., 13, p. 70Kasahara, Torii, Yuda, (1979) 16th Int. Cosmic-ray Conf., 13, p. 79Shibata, (1979) 16th Int. Cosmic-ray Conf., 7, p. 176H. Semba, T. Shibata and T. Tabuki, Suppl. Prog. Theor. Phys., to be publishedZhdanov, Roinishvilli, Smorodin, Tomaszevski, (1975) FIAN preprint no. 163Lattes, Fujimoto, Hasegawa, Hadronic interactions of high energy cosmic-ray observed by emulsion chambers (1980) Physics Reports, 65, p. 152Ellsworth, Gaisser, Yodh, (1981) Phys. Rev., 23 D, p. 764Baradzei, Smorodin, (1974) FIAN preprint nos. 103, 104Baradzei, Smorodin, (1977) Acta Univ. Lodz ser. II, (60), p. 51Zhdanov, (1980) FIAN preprint no. 140H. Semba, T. Shibata and T. Tabuki, Suppl. Prog. Theor. Phys., to be publishedShibata, (1980) Phys. Rev., 22 D, p. 100Slavatinsky, (1980) Proc. 7th European Symp. on Cosmic rays, , Leningrad, to be published(1979) AIP Conference Proc. no. 49, p. 145Azimov, Abduzhamilov, Chudakov, (1963) JETP (Sov. Phys.), 45, p. 40713th Int. Cosmic-ray Conf. (1973) 13th Int. Cosmic-ray Conf., 5, p. 326Acharya, Rao, Sivaprasad, Rao, (1979) 16th Int. Cosmic-ray Conf., 6, p. 289Ellsworth, Goodman, Yodh, Gaisser, Stanev, (1981) Phys. Rev., 23 D, p. 771Bariburina, Guseva, Denisova, (1980) Acta Univ. Lodz, 1, p. 9415th Int. Cosmic-ray Conf. (1977) 15th Int. Cosmic-ray Conf., 7, p. 184(1979) AIP Conf. Proc. no. 49, p. 33
Observation Of Very High Energy Cosmic-ray Families In Emulsion Chambers At High Mountain Altitudes (i)
Characteristics of cosmic-ray hadronic interactions in the 1015 - 1017 eV range are studied by observing a total of 429 cosmic-ray families of visible energy greater than 100 TeV found in emulsion chamber experiments at high mountain altitudes, Chacaltaya (5200 m above sea level) and the Pamirs (4300 m above sea level). Extensive comparisons were made with simulated families based on models so far proposed, concentrating on the relation between the observed family flux and the behaviour of high-energy showers in the families, hadronic and electromagnetic components. It is concluded that there must be global change in characteristics of hadronic interactions at around 1016 eV deviating from thise known in the accelerator energy range, specially in the forwardmost angular region of the collision. A detailed study of a new shower phenomenon of small-pT particle emissions, pT being of the order of 10 MeV/c, is carried out and its relation to the origin of huge "halo" phenomena associated with extremely high energy families is discussed as one of the possibilities. General characteristics of such super-families are surveyed. © 1992.3702365431Borisov, (1981) Nucl. Phys., 191 BBaybrina, (1984) Trudy FIAN 154, p. 1. , [in Russian], Nauka, MoscowLattes, Hadronic interactions of high energy cosmic-ray observed by emulsion chambers (1980) Physics Reports, 65, p. 151Hasegawa, ICR-Report-151-87-5 (1987) presented at FNAL CDF Seminar, , Inst. for Cosmic Ray Research, Univ. of TokyoCHACALTAYA Emulsion Chamber Experiment (1971) Progress of Theoretical Physics Supplement, 47, p. 1Yamashita, Ohsawa, Chinellato, (1984) Proc. 3rd Int. Symp. on Cosmic Rays and Particle Physics, p. 30. , Tokyo, 1984, Inst. for Cosmic Ray Research, Univ. of Tokyo(1984) Proc. 3rd Int. Symp. on Cosmic Rays and Particle Physics, p. 1. , Tokyo, 1984Baradzei, (1984) Proc. 3rd Int. Symp. on Cosmic Rays and Particle Physics, p. 136. , Tokyo, 1984Yamashita, (1985) J. Phys. Soc. Jpn., 54, p. 529Bolisov, (1984) Proc. 3rd Int. Symp. on Cosmic rays and Particle Physics, p. 248. , Tokyo, 1984, Inst. for Cosmic Ray Research, Univ. of TokyoTamada, Tomaszewski, (1988) Proc. 5th Int. Symp. on Very High Energy Cosmic-Ray Interactions, p. 324. , Lodz, 1988, Inst. for Cosmic Ray Research, Univ. of Tokyo, PolandHasegawa, (1989) ICR-Report-197-89-14, , Inst. for Cosmic Ray Research, Univ. of TokyoCHACALTAYA Emulsion Chamber Experiment (1971) Progress of Theoretical Physics Supplement, 47, p. 1Okamoto, Shibata, (1987) Nucl. Instrum. Methods, 257 A, p. 155Zhdanov, (1980) FIAN preprint no. 45, , Lebedev Physical Institute, MoscowSemba, Gross Features of Nuclear Interactions around 1015eV through Observation of Gamma Ray Families (1983) Progress of Theoretical Physics Supplement, 76, p. 111Nikolsky, (1975) Izv. Akad. Nauk. USSR Ser. Fis., 39, p. 1160Burner, Energy spectra of cosmic rays above 1 TeV per nucleon (1990) The Astrophysical Journal, 349, p. 25Takahashi, (1990) 6th Int. Symp. on Very High Energy Cosmic-ray Interactions, , Tarbes, FranceRen, (1988) Phys. Rev., 38 D, p. 1404Alner, The UA5 high energy simulation program (1987) Nuclear Physics B, 291 B, p. 445Bozzo, Measurement of the proton-antiproton total and elastic cross sections at the CERN SPS collider (1984) Physics Letters B, 147 B, p. 392Wrotniak, (1985) Proc. 19th Cosmic-Ray Conf. La Jolla, 1985, 6, p. 56. , NASA Conference Publication, Washington, D.CWrotniak, (1985) Proc. 19th Cosmic-Ray Conf. La Jolla, 1985, 6, p. 328. , NASA Conference Publication, Washington, D.CMukhamedshin, (1984) Trudy FIAN, 154, p. 142. , Nauka, Moscow, [in Russian]Dunaevsky, Pluta, Slavatinsky, (1988) Proc. 5th Int. Symp. on Very High Energy Cosmic-Ray Interactions, p. 143. , Lodz, 1988, Inst. of Physics, Univ. of Lodz, PolandKaidalov, Ter-Martirosyan, (1987) Proc. 20th Int. Cosmic-Ray Conf., Moscow, 1987, 5, p. 141. , Nauka, MoscowShabelsky, (1985) preprints LNPI-1113Shabelsky, (1986) preprints LNPI-1224, , Leningrad [in Russian]Hillas, (1979) Proc. 16th Int. Cosmic-Ray Conf., Kyoto, 6, p. 13. , Inst. for Cosmic Ray Research, Univ. of TokyoBorisov, (1987) Phys. Lett., 190 B, p. 226Hasegawa, Tamada, (1990) 6th Int. Symp. on Very High Energy Cosmic-Ray Interactions, , Tarbes, FranceSemba, Gross Features of Nuclear Interactions around 1015eV through Observation of Gamma Ray Families (1983) Progress of Theoretical Physics Supplement, p. 111Ren, (1988) Phys. Rev., 38 D, p. 1404Dynaevsky, Zimin, (1988) Proc. 5th Int. Symp. on Very High Energy Cosmic-Ray Interaction, p. 93. , Lodz, 1988, Inst. of Physics, Univ. of Lodz, PolandDynaevsky, (1990) Proc. 6th Int. Symp. on Very High Energy Cosmic-Ray Interactions, , Tarbes, France(1989) FIAN preprint no. 208, , Lebedev Physical Institute, Moscow(1990) Proc. 21st Int. Cosmic-Ray Conf., Adelaide, 8, p. 259. , Dept. Physics and Mathematical Physics, Univ. of Adelaide, AustraliaHasegawa, (1990) ICR-Report-216-90-9, , Inst. for Cosmic-Ray Research, Univ. of TokyoTamada, (1990) Proc. 21st Int. Cosmic-Ray Conf., Adelaide, 1990, 8. , Dept. Physics and Mathematical Physics, Univ. of Adelaide, AustraliaTamada, (1990) ICR-Report-216-90-9(1981) Proc. 17th Int. Cosmic-Ray Conf., Paris, 5, p. 291(1990) Proc. Int. Cosmic-Ray Conf., Adelaide, 1990, 8, p. 267. , Dept. Physics and Mathematical Physics, Univ. of Adelaide, Australia(1989) Inst. Nucl. Phys. 89-67/144, , preprint, Inst. Nucl. Phys., Moscow State UnivSmilnova, (1988) Proc. 5th Int. Sym. on Very High Energy Cosmic-Ray Interactions, p. 42. , Lodz, 1988, Inst. of Physics, Univ. of Lodz, PolandGoulianos, (1986) Proc. Workshop of Particle Simulation at High Energies, , University of Wisconsin, Madison, USAIvanenko, (1983) Proc. 18th Int. Cosmic-Ray Conf., Bangalore, 1983, 5, p. 274. , Tata Inst. Fundamental Research, Bombay, IndiaIvanenko, (1984) Proc. Int. Symp. on Cosmic-Rays and Particle Physics, p. 101. , Tokyo, 1984, Inst. for Cosmic Ray Research, Univ. of Tokyo(1988) 5th Int. Symp. on Very High Energy Cosmic-Ray Interactions, p. 180. , Lodz, 1988, Inst. of Physics, Univ. of Lodz, Poland(1990) Proc. 21st Int. Cosmic-Ray Conf., Adelaide, 1990, 8, p. 251. , Dept. Physics and Mathematical Physics, Univ. of Adelaide, Australia(1991) Izv. AN USSR No. 4, , to be publishedNikolsky, Shaulov, Cherdyntseva, (1990) FIAN preprint no. 140, , Lebedev Physical Institute, Moscow, [in Russian](1987) Proc. 20th Int. Cosmic-Ray Conf., Moscow, 1987, 5, p. 326. , Nauka, Mosco
Global Retinoblastoma Presentation and Analysis by National Income Level
Importance: Early diagnosis of retinoblastoma, the most common intraocular cancer, can save both a child's life and vision. However, anecdotal evidence suggests that many children across the world are diagnosed late. To our knowledge, the clinical presentation of retinoblastoma has never been assessed on a global scale. Objectives: To report the retinoblastoma stage at diagnosis in patients across the world during a single year, to investigate associations between clinical variables and national income level, and to investigate risk factors for advanced disease at diagnosis. Design, Setting, and Participants: A total of 278 retinoblastoma treatment centers were recruited from June 2017 through December 2018 to participate in a cross-sectional analysis of treatment-naive patients with retinoblastoma who were diagnosed in 2017. Main Outcomes and Measures: Age at presentation, proportion of familial history of retinoblastoma, and tumor stage and metastasis. Results: The cohort included 4351 new patients from 153 countries; the median age at diagnosis was 30.5 (interquartile range, 18.3-45.9) months, and 1976 patients (45.4) were female. Most patients (n = 3685 84.7%) were from low-and middle-income countries (LMICs). Globally, the most common indication for referral was leukocoria (n = 2638 62.8%), followed by strabismus (n = 429 10.2%) and proptosis (n = 309 7.4%). Patients from high-income countries (HICs) were diagnosed at a median age of 14.1 months, with 656 of 666 (98.5%) patients having intraocular retinoblastoma and 2 (0.3%) having metastasis. Patients from low-income countries were diagnosed at a median age of 30.5 months, with 256 of 521 (49.1%) having extraocular retinoblastoma and 94 of 498 (18.9%) having metastasis. Lower national income level was associated with older presentation age, higher proportion of locally advanced disease and distant metastasis, and smaller proportion of familial history of retinoblastoma. Advanced disease at diagnosis was more common in LMICs even after adjusting for age (odds ratio for low-income countries vs upper-middle-income countries and HICs, 17.92 95% CI, 12.94-24.80, and for lower-middle-income countries vs upper-middle-income countries and HICs, 5.74 95% CI, 4.30-7.68). Conclusions and Relevance: This study is estimated to have included more than half of all new retinoblastoma cases worldwide in 2017. Children from LMICs, where the main global retinoblastoma burden lies, presented at an older age with more advanced disease and demonstrated a smaller proportion of familial history of retinoblastoma, likely because many do not reach a childbearing age. Given that retinoblastoma is curable, these data are concerning and mandate intervention at national and international levels. Further studies are needed to investigate factors, other than age at presentation, that may be associated with advanced disease in LMICs. © 2020 American Medical Association. All rights reserved
Real Time Jewellery Updating Software
Jewellery Management Software is user friendly application software which is used by the jewellery vendors. The main intention behind the designing and developing of the mentioned software is to enable easy transaction and also maintain the details about the available stocks of ornaments. The features of a database such as adding, deleting, modifying and searching of a required record are included in this software. This software handles the complete automation regarding transactions. It also enables the employees to add records regarding new customer, new design ornaments and details about the ornaments etc. It provides a faster and easiest way of viewing the records through searching. The high degree of emphasis of the software is on adding, deleting, updating, manipulating in a user friendly manner