30 research outputs found

    Plasticity of GABA(B) receptor-mediated heterosynaptic interactions at mossy fibers after status epilepticus

    Get PDF
    Several neurotransmitters, including GABA acting at presynaptic GABAB receptors, modulate glutamate release at synapses between hippocampal mossy fibers and CA3 pyramidal neurons. This phenomenon gates excitation of the hippocampus and may therefore prevent limbic seizure propagation. Here we report that status epilepticus, triggered by either perforant path stimulation or pilocarpine administration, was followed 24 hr later by a loss of GABAB receptor-mediated heterosynaptic depression among populations of mossy fibers. This was accompanied by a decrease in the sensitivity of mossy fiber transmission to the exogenous GABAB receptor agonist baclofen. Autoradiography revealed a reduction in GABAB receptor binding in the stratum lucidum after status epilepticus. Failure of GABAB receptor-mediated modulation of mossy fiber transmission at mossy fibers may contribute to the development of spontaneous seizures after status epilepticus

    Autoradiographic distribution and applied pharmacological characteristics of dextromethorphan and related antitissue/anticonvulsant drug and novel analogs

    No full text
    Available from British Library Document Supply Centre- DSC:0678.231F(AD-A--273-247)(microfiche) / BLDSC - British Library Document Supply CentreSIGLEGBUnited Kingdo

    GABAB receptors in Schwann cells influence proliferation and myelin protein expression

    No full text
    The location and the role of gamma-aminobutyric acid type B (GABA(B)) receptors in the central nervous system have recently received considerable attention, whilst relatively little is known regarding the peripheral nervous system. In this regard, here we demonstrate for the first time that GABA(B) receptor isoforms [i.e. GABA(B(1)) and GABA(B(2))] are specifically localized in the rat Schwann cell population of the sciatic nerve. Using the selective GABA(B) agonist [i.e. (-)-baclofen] and the antagonists (i.e. CGP 62349, CGP 56999 A, CGP 55845 A), such receptors are shown to be functionally active and negatively coupled to the adenylate cyclase system. Furthermore, exposure of cultured Schwann cells to (-)-baclofen inhibits their proliferation and reduces the synthesis of specific myelin proteins (i.e. glycoprotein Po, peripheral myelin protein 22, myelin-associated glycoprotein, connexin 32), providing evidence for a physiological role of GABA(B) receptors in the glial cells of the peripheral nervous system
    corecore