454 research outputs found

    Testing assumptions of nitrogen cycling between a temperate, model coral host and its facultative symbiont: symbiotic contributions to dissolved inorganic nitrogen assimilation

    Get PDF
    Coral symbioses are predicated on the need for mutual nutrient acquisition and translocation between partners. Carbon translocation is well-studied in this classic mutualism, while nitrogen (N) has received comparatively less attention. Quantifying the mechanisms and dynamics of N assimilation is critical to understanding the functional ecology of coral organisms. Given the importance of symbiosis to the coral holobiont, it is important to determine what role photosynthetic symbionts play in N acquisition. We used the facultatively symbiotic temperate coral Astrangia poculata and ^15N labeling to test the effects of symbiotic state and trophic status on N acquisition. We tracked assimilation of 2 forms of isotopically labeled dissolved inorganic N (DIN: ammonium, ^15NH_4+ and nitrate, ^15NO_3^-) by fed and starved colonies of both symbiotic and aposymbiotic A. poculata. Coral holobiont tissue was subsequently analyzed for δ^15N and changes in photosynthetic efficiency. Results suggest that corals acquired the most N from DIN via their symbiont Breviolum psygmophilum and that NH_4+ is more readily assimilated than NO_3^-. Photosynthetic efficiency increased with the addition of NH_4^+, but only for fed, symbiotic treatments. NO_3^- adversely affected photosynthetic efficiency among starved corals. Our results suggest that symbiosis is advantageous for DIN acquisition, that dysbiosis inhibits corals’ mixotrophic strategy of nutrient acquisition, and that either feeding or symbiosis alone does not fully provide the energetic advantage of both. This study lends support to the emerging hypothesis that symbionts are mutualists in optimal conditions but shift to a parasitic paradigm when resources or energy are scarce.Published versio

    Single-electron transport driven by surface acoustic waves: moving quantum dots versus short barriers

    Full text link
    We have investigated the response of the acoustoelectric current driven by a surface-acoustic wave through a quantum point contact in the closed-channel regime. Under proper conditions, the current develops plateaus at integer multiples of ef when the frequency f of the surface-acoustic wave or the gate voltage Vg of the point contact is varied. A pronounced 1.1 MHz beat period of the current indicates that the interference of the surface-acoustic wave with reflected waves matters. This is supported by the results obtained after a second independent beam of surface-acoustic wave was added, traveling in opposite direction. We have found that two sub-intervals can be distinguished within the 1.1 MHz modulation period, where two different sets of plateaus dominate the acoustoelectric-current versus gate-voltage characteristics. In some cases, both types of quantized steps appeared simultaneously, though at different current values, as if they were superposed on each other. Their presence could result from two independent quantization mechanisms for the acoustoelectric current. We point out that short potential barriers determining the properties of our nominally long constrictions could lead to an additional quantization mechanism, independent from those described in the standard model of 'moving quantum dots'.Comment: 25 pages, 12 figures, to be published in a special issue of J. Low Temp. Phys. in honour of Prof. F. Pobel

    Turbulent Compressible Convection with Rotation - Penetration above a Convection Zone

    Full text link
    We perform Large eddy simulations of turbulent compressible convection in stellar-type convection zones by solving the Navi\'{e}r-Stokes equations in three dimensions. We estimate the extent of penetration into the stable layer above a stellar-type convection zone by varying the rotation rate ({\boldmathΩ\rm\Omega}), the inclination of the rotation vector (θ\theta) and the relative stability (SS) of the upper stable layer. The computational domain is a rectangular box in an f-plane configuration and is divided into two regions of unstable and stable stratification with the stable layer placed above the convectively unstable layer. Several models have been computed and the penetration distance into the stable layer above the convection zone is estimated by determining the position where time averaged kinetic energy flux has the first zero in the upper stable layer. The vertical grid spacing in all the model is non-uniform, and is less in the upper region so that the flows are better resolved in the region of interest. We find that the penetration distance increases as the rotation rate increases for the case when the rotation vector is aligned with the vertical axis. However, with the increase in the stability of the upper stable layer, the upward penetration distance decreases. Since we are not able to afford computations with finer resolution for all the models, we compute a number of models to see the effect of increased resolution on the upward penetration. In addition, we estimate the upper limit on the upward convective penetration from stellar convective cores.Comment: Accepted for Publication in Asttrophysics & Space Scienc

    Speaking of trade: Its effect on agriculture

    Get PDF
    This archival publication may not reflect current scientific knowledge or recommendations. Current information available from the University of Minnesota Extension: https://www.extension.umn.edu

    The 'causes' of teenage pregnancy: review of South African research - Part 2

    Get PDF
    This article forms the second of a two-part series in which South African research on teenage pregnancy is reviewed. Part 1 of the series dealt with the consequences of teenage pregnancy; this paper reviews the 'causes' thereof. International literature is incorporated in the discussion by way of comparison. Contributory factors which have been investigated by South African researchers include: reproductive ignorance; the earlier occurrence of menarche; risktaking behaviour; psychological problems; peer influence; co-ercive sexual relations; dysfunctional family patterns; poor health services; socio-economic status; the breakdown of cultural traditions; and the cultural value placed on children. Preston-Whyte and colleagues present a revisionist argument, stating that early pregnancy may represent a rational life choice for certain adolescent women. The article is concluded with comments on methodological problems encountered in the South African research, and a discussion on the implications in terms of policy formulation

    Applying the Behavior Change Technique Taxonomy to Four Multicomponent Childhood Obesity Interventions

    Get PDF
    Applying the Behavior Change Technique Taxonomy has the potential to facilitate identification of effective childhood obesity intervention components. This article evaluates the feasibility of coding Childhood Obesity Prevention and Treatment Consortium interventions and compares reliability between external taxonomy-familiar coders and internal intervention-familiar coders. After training, coder pairs independently coded prespecified portions of intervention materials. An adjudication process was used to explore coding discrepancies. Reliability between internal and external coders was moderate (prevalence and bias-adjusted kappa.38 to.55). Reliability for specific target behaviors varied with substantial agreement for physical activity (.63 to.76) and moderate for dietary intake (.44 to.63). Applying the taxonomy to these interventions was feasible, but agreement was modest. Coding discrepancies highlight the importance of refining coding to capture the complexities of childhood obesity interventions, which often engage multiple recipients (e.g., parents and/or children) and address multiple behaviors (e.g., diet, physical activity, screen time)
    • …
    corecore