2 research outputs found

    Composition of processes and related partial differential equations

    Full text link
    In this paper different types of compositions involving independent fractional Brownian motions B^j_{H_j}(t), t>0, j=1,$ are examined. The partial differential equations governing the distributions of I_F(t)=B^1_{H_1}(|B^2_{H_2}(t)|), t>0 and J_F(t)=B^1_{H_1}(|B^2_{H_2}(t)|^{1/H_1}), t>0 are derived by different methods and compared with those existing in the literature and with those related to B^1(|B^2_{H_2}(t)|), t>0. The process of iterated Brownian motion I^n_F(t), t>0 is examined in detail and its moments are calculated. Furthermore for J^{n-1}_F(t)=B^1_{H}(|B^2_H(...|B^n_H(t)|^{1/H}...)|^{1/H}), t>0 the following factorization is proved J^{n-1}_F(t)=\prod_{j=1}^{n} B^j_{\frac{H}{n}}(t), t>0. A series of compositions involving Cauchy processes and fractional Brownian motions are also studied and the corresponding non-homogeneous wave equations are derived.Comment: 32 page

    Estabilización de la solución estadística de la ecuación parabólica.

    No full text
    We study the convergence of the statistical solutions of the parabolic equation. Under some mixing condition (in the sense of Rosenblatt) for initial measure and natural assumptions on the coefficients of the equation we prove weak convergence to the Gaussian distribution. Similar results for the hyperbolic equations were obtained in [1–4]
    corecore