4 research outputs found

    Claw-free t-perfect graphs can be recognised in polynomial time

    Full text link
    A graph is called t-perfect if its stable set polytope is defined by non-negativity, edge and odd-cycle inequalities. We show that it can be decided in polynomial time whether a given claw-free graph is t-perfect

    Finding induced paths of given parity in claw-free graphs

    Get PDF
    The Parity Path problem is to decide if a given graph contains both an induced path of odd length and an induced path of even length between two specified vertices. In the related problems Odd Induced Path and Even Induced Path, the goal is to determine whether an induced path of odd, respectively even, length between two specified vertices exists. Although all three problems are NP-complete in general, we show that they can be solved in O(n5)(n5) time for the class of claw-free graphs. Two vertices s and t form an even pair in G if every induced path from s to t in G has even length. Our results imply that the problem of deciding if two specified vertices of a claw-free graph form an even pair, as well as the problem of deciding if a given claw-free graph has an even pair, can be solved in O(n5)(n5) time and O(n7)(n7) time, respectively. We also show that we can decide in O(n7)(n7) time whether a claw-free graph has an induced cycle of given parity through a specified vertex. Finally, we show that a shortest induced path of given parity between two specified vertices of a claw-free perfect graph can be found in O(n7)(n7) time

    Induced disjoint paths in claw-free graphs.

    Full text link
    Paths P1,…,Pk in a graph G = (V,E) are said to be mutually induced if for any 1 ≤ i < j ≤ k, Pi and Pj have neither common vertices nor adjacent vertices (except perhaps their end-vertices). The Induced Disjoint Paths problem is to test whether a graph G with k pairs of specified vertices (si,ti) contains k mutually induced paths Pi such that Pi connects si and ti for i = 1,…,k. This problem is known to be NP-complete already for k = 2, but for n-vertex claw-free graphs, Fiala et al.gave an nO(k)-time algorithm. We improve the latter result by showing that the problem is fixed-parameter tractable for claw-free graphs when parameterized by k. Several related problems, such as the k-in-a-Path problem, are shown to be fixed-parameter tractable for claw-free graphs as well. We prove that an improvement of these results in certain directions is unlikely, for example by noting that the Induced Disjoint Paths problem cannot have a polynomial kernel for line graphs (a type of claw-free graphs), unless NP ⊆ coNP/poly. Moreover, the problem becomes NP-complete, even when k = 2, for the more general class of K1,4-free graphs. Finally, we show that the nO(k)-time algorithm of Fiala et al.for testing whether a claw-free graph contains some k-vertex graph H as a topological induced minor is essentially optimal by proving that this problem is W[1]-hard even if G and H are line graphs
    corecore