37 research outputs found

    The role of point-like topological excitations at criticality: from vortices to global monopoles

    Get PDF
    We determine the detailed thermodynamic behavior of vortices in the O(2) scalar model in 2D and of global monopoles in the O(3) model in 3D. We construct new numerical techniques, based on cluster decomposition algorithms, to analyze the point defect configurations. We find that these criteria produce results for the Kosterlitz-Thouless temperature in agreement with a topological transition between a polarizable insulator and a conductor, at which free topological charges appear in the system. For global monopoles we find no pair unbinding transition. Instead a transition to a dense state where pairs are no longer distinguishable occurs at T<Tc, without leading to long range disorder. We produce both extensive numerical evidence of this behavior as well as a semi-analytic treatment of the partition function for defects. General expectations for N=D>3 are drawn, based on the observed behavior.Comment: 14 pages, REVTEX, 13 eps figure

    The Ginzburg regime and its effects on topological defect formation

    Get PDF
    The Ginzburg temperature has historically been proposed as the energy scale of formation of topological defects at a second order symmetry breaking phase transition. More recently alternative proposals which compute the time of formation of defects from the critical dynamics of the system, have been gaining both theoretical and experimental support. We investigate, using a canonical model for string formation, how these two pictures compare. In particular we show that prolonged exposure of a critical field configuration to the Ginzburg regime results in no substantial suppression of the final density of defects formed. These results dismiss the recently proposed role of the Ginzburg regime in explaining the absence of topological defects in 4He pressure quench experiments.Comment: 8 pages, 5 ps figure

    Kink-boundary collisions in a two dimensional scalar field theory

    Get PDF
    In a two-dimensional toy model, motivated from five-dimensional heterotic M-theory, we study the collision of scalar field kinks with boundaries. By numerical simulation of the full two-dimensional theory, we find that the kink is always inelastically reflected with a model-independent fraction of its kinetic energy converted into radiation. We show that the reflection can be analytically understood as a fluctuation around the scalar field vacuum. This picture suggests the possibility of spontaneous emission of kinks from the boundary due to small perturbations in the bulk. We verify this picture numerically by showing that the radiation emitted from the collision of an initial single kink eventually leads to a bulk populated by many kinks. Consequently, processes changing the boundary charges are practically unavoidable in this system. We speculate that the system has a universal final state consisting of a stack of kinks, their number being determined by the initial energy

    A vortex description of the first-order phase transition in type-I superconductors

    Full text link
    Using both analytical arguments and detailed numerical evidence we show that the first order transition in the type-I 2D Abelian Higgs model can be understood in terms of the statistical mechanics of vortices, which behave in this regime as an ensemble of attractive particles. The well-known instabilities of such ensembles are shown to be connected to the process of phase nucleation. By characterizing the equation of state for the vortex ensemble we show that the temperature for the onset of a clustering instability is in qualitative agreement with the critical temperature. Below this point the vortex ensemble collapses to a single cluster, which is a non-extensive phase, and disappears in the absence of net topological charge. The vortex description provides a detailed mechanism for the first order transition, which applies at arbitrarily weak type-I and is gauge invariant unlike the usual field-theoretic considerations, which rely on asymptotically large gauge coupling.Comment: 4 pages, 6 figures, uses RevTex. Additional references added, some small corrections to the tex

    Avaliação da atividade fenilalanina amônia liásica em folhas de bananeira inoculadas com o fungo Mycosphaerella fijiensis.

    Get PDF
    O objetivo deste trabalho foi avaliar os atributos bioquímicos envolvidos na defesa da bananeira ao ataque do fungo M. fijiensis, notadamente avaliar o papel da enzima fenilalanina amônia liase nesta resposta, nas variedades Caprichosa, Garantida, FHIA-18, Prata Ken, Prata Anã, Maçã e Grande Naine, nos tempos: 0, 6h, 24h, 48h, 72h dias após a inoculação. Após a coleta, as folhas foram pesadas e obtidos os extratos totais por meio de maceração das folhas com tampão acetato de sódio 50 mM, pH 5,2, os quais foram utilizados nas determinações de proteínas e atividade enzimática

    Stochastic Production Of Kink-Antikink Pairs In The Presence Of An Oscillating Background

    Get PDF
    We numerically investigate the production of kink-antikink pairs in a (1+1)(1+1) dimensional ϕ4\phi^4 field theory subject to white noise and periodic driving. The twin effects of noise and periodic driving acting in conjunction lead to considerable enhancement in the kink density compared to the thermal equilibrium value, for low dissipation coefficients and for a specific range of frequencies of the oscillating background. The dependence of the kink-density on the temperature of the heat bath, the amplitude of the oscillating background and value of the dissipation coefficient is also investigated. An interesting feature of our result is that kink-antikink production occurs even though the system always remains in the broken symmetry phase.Comment: Revtex, 21 pages including 7 figures; more references adde

    A Grand Canonical Ensemble Approach to the Thermodynamic Properties of the Nucleon in the Quark-Gluon Coupling Model

    Get PDF
    In this paper, we put forward a way to study the nucleon's thermodynamic properties such as its temperature, entropy and so on, without inputting any free parameters by human hand, even the nucleon's mass and radius. First we use the Lagrangian density of the quark gluon coupling fields to deduce the Dirac Equation of the quarks confined in the gluon fields. By boundary conditions we solve the wave functions and energy eigenvalues of the quarks, and thus get energy-momentum tensor, nucleon mass, and density of states. Then we utilize a hybrid grand canonical ensemble, to generate the temperature and chemical potentials of quarks, antiquarks of three flovars by the four conservation laws of the energy and the valence quark numbers, after which, all other thermodynamic properties are known. The only seemed free paremeter, the nucleon radius is finally determined by the grand potential minimal principle.Comment: 5 pages, LaTe

    QED3 theory of underdoped high temperature superconductors

    Full text link
    Low-energy theory of d-wave quasiparticles coupled to fluctuating vortex loops that describes the loss of phase coherence in a two dimensional d-wave superconductor at T=0 is derived. The theory has the form of 2+1 dimensional quantum electrodynamics (QED3), and is proposed as an effective description of the T=0 superconductor-insulator transition in underdoped cuprates. The coupling constant ("charge") in this theory is proportional to the dual order parameter of the XY model, which is assumed to be describing the quantum fluctuations of the phase of the superconducting order parameter. The principal result is that the destruction of phase coherence in d-wave superconductors typically, and immediately, leads to antiferromagnetism. The transition can be understood in terms of the spontaneous breaking of an approximate "chiral" SU(2) symmetry, which may be discerned at low enough energies in the standard d-wave superconductor. The mechanism of the symmetry breaking is analogous to the dynamical mass generation in the QED3, with the "mass" here being proportional to staggered magnetization. Other insulating phases that break chiral symmetry include the translationally invariant "d+ip" and "d+is" insulators, and various one dimensional charge-density and spin-density waves. The theory offers an explanation for the rounded d-wave-like dispersion seen in ARPES experiments on Ca2CuO2Cl2 (F. Ronning et. al., Science 282, 2067 (1998)).Comment: Revtex, 20 pages, 5 figures; this is a much extended follow-up to the Phys. Rev. Lett. vol.88, 047006 (2002) (cond-mat/0110188); improved presentation, many additional explanations, comments, and references added, sec. IV rewritten. Final version, to appear in Phys. Rev.

    Nonequilibrium Evolution of Correlation Functions: A Canonical Approach

    Get PDF
    We study nonequilibrium evolution in a self-interacting quantum field theory invariant under space translation only by using a canonical approach based on the recently developed Liouville-von Neumann formalism. The method is first used to obtain the correlation functions both in and beyond the Hartree approximation, for the quantum mechanical analog of the ϕ4\phi^{4} model. The technique involves representing the Hamiltonian in a Fock basis of annihilation and creation operators. By separating it into a solvable Gaussian part involving quadratic terms and a perturbation of quartic terms, it is possible to find the improved vacuum state to any desired order. The correlation functions for the field theory are then investigated in the Hartree approximation and those beyond the Hartree approximation are obtained by finding the improved vacuum state corrected up to O(λ2){\cal O}(\lambda^2). These correlation functions take into account next-to-leading and next-to-next-to-leading order effects in the coupling constant. We also use the Heisenberg formalism to obtain the time evolution equations for the equal-time, connected correlation functions beyond the leading order. These equations are derived by including the connected 4-point functions in the hierarchy. The resulting coupled set of equations form a part of infinite hierarchy of coupled equations relating the various connected n-point functions. The connection with other approaches based on the path integral formalism is established and the physical implications of the set of equations are discussed with particular emphasis on thermalization.Comment: Revtex, 32 pages; substantial new material dealing with non-equilibrium evolution beyond Hartree approx. based on the LvN formalism, has been adde
    corecore