8 research outputs found

    Diversity and adaptations of escherichia coli strains: Exploring the intestinal community in crohn’s disease patients and healthy individuals

    No full text
    Crohn’s disease (CD) is characterized by a chronic, progressive inflammation across the gastrointestinal tract with a series of exacerbations and remissions. A significant factor in the CD pathogenesis is an imbalance in gut microbiota composition, particularly the prevalence of Escherichia coli. In the present study, the genomes of sixty-three E. coli strains from the gut of patients with CD and healthy subjects were sequenced. In addition, eighteen E. coli-like metagenomeassembled genomes (MAGs) were reconstructed from the shotgun-metagenome sequencing data of fecal samples. The comparative analysis revealed the similarity of E. coli genomes regardless of the origin of the strain. The strains exhibited similar genetic patterns of virulence, antibiotic resistance, and bacteriocin-producing systems. The study showed antagonistic activity of E. coli strains and the metabolic features needed for their successful competition in the human gut environment. These observations suggest complex bacterial interactions within the gut which may affect the host and cause intestinal damage

    Inflammatory Bowel Disease-Associated Changes in the Gut: Focus on Kazan Patients

    No full text
    Background: Several studies have highlighted the role of host-microbiome interactions in the pathogenesis of inflammatory bowel disease (IBD), resulting in an increasing amount of data mainly focusing on Western patients. Because of the increasing prevalence of IBD in newly industrialized countries such as those in Asia, the Middle East, and South America, there is mounting interest in elucidating the gut microbiota of these populations. We present a comprehensive analysis of several IBD-related biomarkers and gut microbiota profiles and functions of a unique population of patients with IBD and healthy patients from Kazan (Republic of Tatarstan, Russia). Methods: Blood and fecal IBD biomarkers, serum cytokines, and fecal short-chain fatty acid (SCFA) content were profiled. Finally, fecal microbiota composition was analyzed by 16S and whole-genome shotgun sequencing. Results: Fecal microbiota whole-genome sequencing confirmed the presence of classic IBD dysbiotic features at the phylum level, with increased abundance of Proteobacteria, Actinobacteria, and Fusobacteria and decreased abundance of Firmicutes, Bacteroidetes, and Verrucomicrobia. At the genus level, the abundance of both fermentative (SCFA-producing and hydrogen (H2)-releasing) and hydrogenotrophic (H2-consuming) microbes was affected in patients with IBD. This imbalance was confirmed by the decreased abundance of SCFA species in the feces of patients with IBD and the change in anaerobic index, which mirrors the redox status of the intestine. Conclusions: Our analyses highlighted how IBD-related dysbiotic microbiota - which are generally mainly linked to SCFA imbalance - may affect other important metabolic pathways, such as H2 metabolism, that are critical for host physiology and disease development

    Neutralizing activity of sera from sputnik v-vaccinated people against variants of concern (VOC: B.1.1.7, B.1.351, P.1, B.1.617.2, B.1.617.3) and Moscow endemic SARS-CoV-2 variants

    No full text
    Since the beginning of the 2021 year, all the main six vaccines against COVID-19 have been used in mass vaccination companies around the world. Virus neutralization and epidemiological efficacy drop obtained for several vaccines against the B.1.1.7, B.1.351 P.1, and B.1.617 genotypes are of concern. There is a growing number of reports on mutations in receptor-binding domain (RBD) increasing the transmissibility of the virus and escaping the neutralizing effect of antibodies. The Sputnik V vaccine is currently approved for use in more than 66 countries but its activity against variants of concern (VOC) is not extensively studied yet. Virus-neutralizing activity (VNA) of sera obtained from people vaccinated with Sputnik V in relation to internationally relevant genetic lineages B.1.1.7, B.1.351, P.1, B.1.617.2, B.1.617.3 and Moscow endemic variants B.1.1.141 (T385I) and B.1.1.317 (S477N, A522S) with mutations in the RBD domain has been assessed. The data obtained indicate no significant differences in VNA against B.1.1.7, B.1.617.3 and local genetic lineages B.1.1.141 (T385I), B.1.1.317 (S477N, A522S) with RBD mutations. For the B.1.351, P.1, and B.1.617.2 statistically significant 3.1-, 2.8-, and 2.5-fold, respectively, VNA reduction was observed. Notably, this decrease is lower than that reported in publications for other vaccines. However, a direct comparative study is necessary for a conclusion. Thus, sera from “Sputnik V”-vaccinated retain neutralizing activity against VOC B.1.1.7, B.1.351, P.1, B.1.617.2, B.1.617.3 as well as local genetic lineages B.1.1.141 and B.1.1.317 circulating in Moscow. © 2021 by the authors. Licensee MDPI, Basel, Switzerland

    Antimicrobial Peptides - Small but Mighty Weapons for Plants to Fight Phytopathogens

    No full text
    corecore