381 research outputs found

    The metabolic dynamics of cartilage explants over a long-term culture period

    Get PDF
    INTRODUCTION: Although previous studies have been performed on cartilage explant cultures, the generalized dynamics of cartilage metabolism after extraction from the host are still poorly understood due to differences in the experimental setups across studies, which in turn prevent building a complete picture. METHODS: In this study, we investigated the response of cartilage to the trauma sustained during extraction and determined the time needed for the cartilage to stabilize. Explants were extracted aseptically from bovine metacarpal-phalangeal joints and cultured for up to 17 days. RESULTS: The cell viability, cell number, proteoglycan content, and collagen content of the harvested explants were analyzed at 0, 2, 10, and 17 days after explantation. A high percentage of the cartilage explants were found to be viable. The cell density initially increased significantly but stabilized after two days. The proteoglycan content decreased gradually over time, but it did not decrease to a significant level due to leakage through the distorted peripheral collagen network and into the bathing medium. The collagen content remained stable for most of the culture period until it dropped abruptly on day 17. CONCLUSION: Overall, the tested cartilage explants were sustainable over long-term culture. They were most stable from day 2 to day 10. The degradation of the collagen on day 17 did not reach diseased levels, but it indicated the potential of the cultures to develop into degenerated cartilage. These findings have implications for the application of cartilage explants in pathophysiological fields

    Thermodynamics and Kinetic Theory of Relativistic Gases in 2-D Cosmological Models

    Get PDF
    A kinetic theory of relativistic gases in a two-dimensional space is developed in order to obtain the equilibrium distribution function and the expressions for the fields of energy per particle, pressure, entropy per particle and heat capacities in equilibrium. Furthermore, by using the method of Chapman and Enskog for a kinetic model of the Boltzmann equation the non-equilibrium energy-momentum tensor and the entropy production rate are determined for a universe described by a two-dimensional Robertson-Walker metric. The solutions of the gravitational field equations that consider the non-equilibrium energy-momentum tensor - associated with the coefficient of bulk viscosity - show that opposed to the four-dimensional case, the cosmic scale factor attains a maximum value at a finite time decreasing to a "big crunch" and that there exists a solution of the gravitational field equations corresponding to a "false vacuum". The evolution of the fields of pressure, energy density and entropy production rate with the time is also discussed.Comment: 23 pages, accepted in PR

    Are markers of inflammation more strongly associated with risk for fatal than for nonfatal vascular events?

    Get PDF
    <p><b>Background:</b> Circulating inflammatory markers may more strongly relate to risk of fatal versus nonfatal cardiovascular disease (CVD) events, but robust prospective evidence is lacking. We tested whether interleukin (IL)-6, C-reactive protein (CRP), and fibrinogen more strongly associate with fatal compared to nonfatal myocardial infarction (MI) and stroke.</p> <p><b>Methods and Findings:</b> In the Prospective Study of Pravastatin in the Elderly at Risk (PROSPER), baseline inflammatory markers in up to 5,680 men and women aged 70-82 y were related to risk for endpoints; nonfatal CVD (i.e., nonfatal MI and nonfatal stroke [n = 672]), fatal CVD (n = 190), death from other CV causes (n = 38), and non-CVD mortality (n = 300), over 3.2-y follow-up. Elevations in baseline IL-6 levels were significantly (p = 0.0009; competing risks model analysis) more strongly associated with fatal CVD (hazard ratio [HR] for 1 log unit increase in IL-6 1.75, 95% confidence interval [CI] 1.44-2.12) than with risk of nonfatal CVD (1.17, 95% CI 1.04-1.31), in analyses adjusted for treatment allocation. The findings were consistent in a fully adjusted model. These broad trends were similar for CRP and, to a lesser extent, for fibrinogen. The results were also similar in placebo and statin recipients (i.e., no interaction). The C-statistic for fatal CVD using traditional risk factors was significantly (+0.017; p<0.0001) improved by inclusion of IL-6 but not so for nonfatal CVD events (p = 0.20).</p> <p><b>Conclusions:</b> In PROSPER, inflammatory markers, in particular IL-6 and CRP, are more strongly associated with risk of fatal vascular events than nonfatal vascular events. These novel observations may have important implications for better understanding aetiology of CVD mortality, and have potential clinical relevance.</p&gt

    Origins of the Ambient Solar Wind: Implications for Space Weather

    Full text link
    The Sun's outer atmosphere is heated to temperatures of millions of degrees, and solar plasma flows out into interplanetary space at supersonic speeds. This paper reviews our current understanding of these interrelated problems: coronal heating and the acceleration of the ambient solar wind. We also discuss where the community stands in its ability to forecast how variations in the solar wind (i.e., fast and slow wind streams) impact the Earth. Although the last few decades have seen significant progress in observations and modeling, we still do not have a complete understanding of the relevant physical processes, nor do we have a quantitatively precise census of which coronal structures contribute to specific types of solar wind. Fast streams are known to be connected to the central regions of large coronal holes. Slow streams, however, appear to come from a wide range of sources, including streamers, pseudostreamers, coronal loops, active regions, and coronal hole boundaries. Complicating our understanding even more is the fact that processes such as turbulence, stream-stream interactions, and Coulomb collisions can make it difficult to unambiguously map a parcel measured at 1 AU back down to its coronal source. We also review recent progress -- in theoretical modeling, observational data analysis, and forecasting techniques that sit at the interface between data and theory -- that gives us hope that the above problems are indeed solvable.Comment: Accepted for publication in Space Science Reviews. Special issue connected with a 2016 ISSI workshop on "The Scientific Foundations of Space Weather." 44 pages, 9 figure

    Implementation Evaluation of a Complex Intervention to Improve Timeliness of Care for Veterans with Transient Ischemic Attack

    Get PDF
    Background: The Protocol-guided Rapid Evaluation of Veterans Experiencing New Transient Neurologic Symptoms (PREVENT) program was designed to address systemic barriers to providing timely guideline-concordant care for patients with transient ischemic attack (TIA). Objective: We evaluated an implementation bundle used to promote local adaptation and adoption of a multi-component, complex quality improvement (QI) intervention to improve the quality of TIA care Bravata et al. (BMC Neurology 19:294, 2019). Design: A stepped-wedge implementation trial with six geographically diverse sites. Participants: The six facility QI teams were multi-disciplinary, clinical staff. Interventions: PREVENT employed a bundle of key implementation strategies: team activation; external facilitation; and a community of practice. This strategy bundle had direct ties to four constructs from the Consolidated Framework for Implementation Research (CFIR): Champions, Reflecting & Evaluating, Planning, and Goals & Feedback. Main measures: Using a mixed-methods approach guided by the CFIR and data matrix analyses, we evaluated the degree to which implementation success and clinical improvement were associated with implementation strategies. The primary outcomes were the number of completed implementation activities, the level of team organization and > 15 points improvement in the Without Fail Rate (WFR) over 1 year. Key results: Facility QI teams actively engaged in the implementation strategies with high utilization. Facilities with the greatest implementation success were those with central champions whose teams engaged in planning and goal setting, and regularly reflected upon their quality data and evaluated their progress against their QI plan. The strong presence of effective champions acted as a pre-condition for the strong presence of Reflecting & Evaluating, Goals & Feedback, and Planning (rather than the other way around), helping to explain how champions at the +2 level influenced ongoing implementation. Conclusions: The CFIR-guided bundle of implementation strategies facilitated the local implementation of the PREVENT QI program and was associated with clinical improvement in the national VA healthcare system

    Teaching the Process of Molecular Phylogeny and Systematics: A Multi-Part Inquiry-Based Exercise

    Get PDF
    Three approaches to molecular phylogenetics are demonstrated to biology students as they explore molecular data from Homo sapiens and four related primates. By analyzing DNA sequences, protein sequences, and chromosomal maps, students are repeatedly challenged to develop hypotheses regarding the ancestry of the five species. Although these exercises were designed to supplement and enhance classroom instruction on phylogeny, cladistics, and systematics in the context of a postsecondary majors-level introductory biology course, the activities themselves require very little prior student exposure to these topics. Thus, they are well suited for students in a wide range of educational levels, including a biology class at the secondary level. In implementing this exercise, we have observed measurable gains, both in student comprehension of molecular phylogeny and in their acceptance of modern evolutionary theory. By engaging students in modern phylogenetic activities, these students better understood how biologists are currently using molecular data to develop a more complete picture of the shared ancestry of all living things

    Principles of Bioimage Informatics: Focus on Machine Learning of Cell Patterns

    Full text link
    Abstract. The field of bioimage informatics concerns the development and use of methods for computational analysis of biological images. Traditionally, analysis of such images has been done manually. Manual annotation is, however, slow, expensive, and often highly variable from one expert to another. Furthermore, with modern automated microscopes, hundreds to thousands of images can be collected per hour, making manual analysis infeasible. This field borrows from the pattern recognition and computer vision literature (which contain many techniques for image processing and recognition), but has its own unique challenges and tradeoffs. Fluorescence microscopy images represent perhaps the largest class of biological images for which automation is needed. For this modality, typical problems include cell segmentation, classification of phenotypical response, or decisions regarding differentiated responses (treatment vs. control setting). This overview focuses on the problem of subcellular location determination as a running example, but the techniques discussed are often applicable to other problems.

    2D characterization of near-surface V P/V S: surface-wave dispersion inversion versus refraction tomography

    No full text
    International audienceThe joint study of pressure (P-) and shear (S-) wave velocities (Vp and Vs ), as well as their ratio (Vp /Vs), has been used for many years at large scales but remains marginal in near-surface applications. For these applications, and are generally retrieved with seismic refraction tomography combining P and SH (shear-horizontal) waves, thus requiring two separate acquisitions. Surface-wave prospecting methods are proposed here as an alternative to SH-wave tomography in order to retrieve pseudo-2D Vs sections from typical P-wave shot gathers and assess the applicability of combined P-wave refraction tomography and surface-wave dispersion analysis to estimate Vp/Vs ratio. We carried out a simultaneous P- and surface-wave survey on a well-characterized granite-micaschists contact at Ploemeur hydrological observatory (France), supplemented with an SH-wave acquisition along the same line in order to compare Vs results obtained from SH-wave refraction tomography and surface-wave profiling. Travel-time tomography was performed with P- and SH- wave first arrivals observed along the line to retrieve Vtomo p and Vtomo s models. Windowing and stacking techniques were then used to extract evenly spaced dispersion data from P-wave shot gathers along the line. Successive 1D Monte Carlo inversions of these dispersion data were performed using fixed Vp values extracted from Vtomo p the model and no lateral constraints between two adjacent 1D inversions. The resulting 1D Vsw s models were then assembled to create a pseudo-2D Vsw s section, which appears to be correctly matching the general features observed on the section. If the pseudo-section is characterized by strong velocity incertainties in the deepest layers, it provides a more detailed description of the lateral variations in the shallow layers. Theoretical dispersion curves were also computed along the line with both and models. While the dispersion curves computed from models provide results consistent with the coherent maxima observed on dispersion images, dispersion curves computed from models are generally not fitting the observed propagation modes at low frequency. Surface-wave analysis could therefore improve models both in terms of reliability and ability to describe lateral variations. Finally, we were able to compute / sections from both and models. The two sections present similar features, but the section obtained from shows a higher lateral resolution and is consistent with the features observed on electrical resistivity tomography, thus validating our approach for retrieving Vp/Vs ratio from combined P-wave tomography and surface-wave profiling

    Collisional and Radiative Processes in Optically Thin Plasmas

    Get PDF
    Most of our knowledge of the physical processes in distant plasmas is obtained through measurement of the radiation they produce. Here we provide an overview of the main collisional and radiative processes and examples of diagnostics relevant to the microphysical processes in the plasma. Many analyses assume a time-steady plasma with ion populations in equilibrium with the local temperature and Maxwellian distributions of particle velocities, but these assumptions are easily violated in many cases. We consider these departures from equilibrium and possible diagnostics in detail
    • 

    corecore