15 research outputs found

    Artificial cell research as a field that connects chemical, biological and philosophical questions

    Full text link
    This review article discusses the interdisciplinary nature and implications of artificial cell research. It starts from two historical theories: Gánti's chemoton model and the autopoiesis theory by Maturana and Varela. They both explain the transition from chemical molecules to biological cells. These models exemplify two different ways in which disciplines of chemistry, biology and philosophy can profit from each other. In the chemoton model, conclusions from one disciplinary approach are relevant for the other disciplines. In contrast, the autopoiesis model itself (rather than its conclusions) is transferred from one discipline to the other. The article closes by underpinning the relevance of artificial cell research for philosophy with reference to the on-going philosophical debates on emergence, biological functions and biocentrism

    Mouse Chromosome 2

    No full text

    Mouse Chromosome 7

    No full text

    Medical Considerations in Prader-Willi Syndrome

    No full text

    Mouse chromosome 2

    No full text

    Protein-altering variants associated with body mass index implicate pathways that control energy intake and expenditure in obesity

    No full text
    Genome-wide association studies (GWAS) have identified >250 loci for body mass index (BMI), implicating pathways related to neuronal biology. Most GWAS loci represent clusters of common, noncoding variants from which pinpointing causal genes remains challenging. Here we combined data from 718,734 individuals to discover rare and low-frequency (minor allele frequency (MAF) < 5%) coding variants associated with BMI. We identified 14 coding variants in 13 genes, of which 8 variants were in genes (ZBTB7B, ACHE, RAPGEF3, RAB21, ZFHX3, ENTPD6, ZFR2 and ZNF169) newly implicated in human obesity, 2 variants were in genes (MC4R and KSR2) previously observed to be mutated in extreme obesity and 2 variants were in GIPR. The effect sizes of rare variants are ~10 times larger than those of common variants, with the largest effect observed in carriers of an MC4R mutation introducing a stop codon (p.Tyr35Ter, MAF = 0.01%), who weighed ~7 kg more than non-carriers. Pathway analyses based on the variants associated with BMI confirm enrichment of neuronal genes and provide new evidence for adipocyte and energy expenditure biology, widening the potential of genetically supported therapeutic targets in obesity
    corecore