2 research outputs found

    Asymptotic properties of quasi-maximum likelihood estimators for ARMA models with time-dependent coefficients

    No full text
    For about thirty years, time series models with time-dependent coefficients have sometimes been considered as an alternative to models with constant coefficients or non-linear models. Analysis based on models with time-dependent models has long suffered from the absence of an asymptotic theory except in very special cases. The purpose of this paper is to provide such a theory without using a locally stationary spectral representation and time rescaling. We consider autoregressive-moving average (ARMA) models with time-dependent coefficients and a heteroscedastic innovation process. The coefficients and the innovation variance are deterministic functions of time which depend on a finite number of parameters. These parameters are estimated by maximising the Gaussian likelihood function. Deriving conditions for consistency and asymptotic normality and obtaining the asymptotic covariance matrix are done using some assumptions on the functions of time in order to attenuate non-stationarity, mild assumptions for the distribution of the innovations, and also a kind of mixing condition. Theorems from the theory of martingales and mixtingales are used. Some simulation results are given and both theoretical and practical examples are treated. © Springer 2006.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore