40 research outputs found

    Anthropometry, carbohydrate and lipid metabolism in the East Flanders Prospective Twin Survey: heritabilities

    Get PDF
    AIMS/HYPOTHESIS: We determined the genetic contribution of 18 anthropometric and metabolic risk factors of type 2 diabetes using a young healthy twin population. METHODS: Traits were measured in 240 monozygotic (MZ) and 138 dizygotic (DZ) twin pairs aged 18 to 34 years. Twins were recruited from the Belgian population-based East Flanders Prospective Twin Survey, which is characterised by its accurate zygosity determination and extensive collection of perinatal and placental data, including information on chorionicity. Heritability was estimated using structural equation modelling implemented in the Mx software package. RESULTS: Intra-pair correlations of the anthropometric and metabolic characteristics did not differ between MZ monochorionic and MZ dichorionic pairs; consequently heritabilities were estimated using the classical twin approach. For body mass, BMI and fat mass, quantitative sex differences were observed; genetic variance explained 84, 85 and 81% of the total variation in men and 74, 75 and 70% in women, respectively. Heritability estimates of the waist-to-hip ratio, sum of four skinfold thicknesses and lean body mass were 70, 74 and 81%, respectively. The heritability estimates of fasting glucose, fasting insulin, homeostasis model assessment of insulin resistance and beta cell function, as well as insulin-like growth factor binding protein-1 levels were 67, 49, 48, 62 and 47%, in that order. Finally, for total cholesterol, LDL-cholesterol, HDL-cholesterol, total cholesterol:HDL-cholesterol ratio, triacylglycerol, NEFA and leptin levels, genetic factors explained 75, 78, 76, 79, 58, 37 and 53% of the total variation, respectively. CONCLUSIONS/INTERPRETATION: Genetic factors explain the greater part of the variation in traits related to obesity, glucose intolerance/insulin resistance and dyslipidaemia

    Sex-specific genetic effects influence variation in body composition

    Get PDF
    Aims/hypothesis: Despite well-known sex differences in body composition it is not known whether sex-specific genetic or environmental effects contribute to these differences. Methods: We assessed body composition in 2,506 individuals, from a young Dutch genetic isolate participating in the Erasmus Rucphen Family study, by dual-energy X-ray absorptiometry and anthropometry. We used variance decomposition procedures to partition variation of body composition into genetic and environmental components common to both sexes and to men and women separately and calculated the correlation between genetic components in men and women. Results: After accounting for age
    corecore