1,099 research outputs found
Spin Readout and Initialization in a Semiconductor Quantum Dot
Electron spin qubits in semiconductors are attractive from the viewpoint of
long coherence times. However, single spin measurement is challenging. Several
promising schemes incorporate ancillary tunnel couplings that may provide
unwanted channels for decoherence. Here, we propose a novel spin-charge
transduction scheme, converting spin information to orbital information within
a single quantum dot by microwave excitation. The same quantum dot can be used
for rapid initialization, gating, and readout. We present detailed modeling of
such a device in silicon to confirm its feasibility.Comment: Published versio
Theory of valley-orbit coupling in a Si/SiGe quantum dot
Electron states are studied for quantum dots in a strained Si quantum well,
taking into account both valley and orbital physics. Realistic geometries are
considered, including circular and elliptical dot shapes, parallel and
perpendicular magnetic fields, and (most importantly for valley coupling) the
small local tilt of the quantum well interface away from the crystallographic
axes. In absence of a tilt, valley splitting occurs only between pairs of
states with the same orbital quantum numbers. However, tilting is ubiquitous in
conventional silicon heterostructures, leading to valley-orbit coupling. In
this context, "valley splitting" is no longer a well defined concept, and the
quantity of merit for qubit applications becomes the ground state gap. For
typical dots used as qubits, a rich energy spectrum emerges, as a function of
magnetic field, tilt angle, and orbital quantum number. Numerical and
analytical solutions are obtained for the ground state gap and for the mixing
fraction between the ground and excited states. This mixing can lead to valley
scattering, decoherence, and leakage for Si spin qubits.Comment: 18 pages, including 4 figure
Cooling of cryogenic electron bilayers via the Coulomb interaction
Heat dissipation in current-carrying cryogenic nanostructures is problematic
because the phonon density of states decreases strongly as energy decreases. We
show that the Coulomb interaction can prove a valuable resource for carrier
cooling via coupling to a nearby, cold electron reservoir. Specifically, we
consider the geometry of an electron bilayer in a silicon-based
heterostructure, and analyze the power transfer. We show that across a range of
temperatures, separations, and sheet densities, the electron-electron
interaction dominates the phonon heat-dissipation modes as the main cooling
mechanism. Coulomb cooling is most effective at low densities, when phonon
cooling is least effective in silicon, making it especially relevant for
experiments attempting to perform coherent manipulations of single spins.Comment: 9 pages, 5 figure
Valley Splitting Theory of SiGe/Si/SiGe Quantum Wells
We present an effective mass theory for SiGe/Si/SiGe quantum wells, with an
emphasis on calculating the valley splitting. The theory introduces a valley
coupling parameter, , which encapsulates the physics of the quantum well
interface. The new effective mass parameter is computed by means of a tight
binding theory. The resulting formalism provides rather simple analytical
results for several geometries of interest, including a finite square well, a
quantum well in an electric field, and a modulation doped two-dimensional
electron gas. Of particular importance is the problem of a quantum well in a
magnetic field, grown on a miscut substrate. The latter may pose a numerical
challenge for atomistic techniques like tight-binding, because of its
two-dimensional nature. In the effective mass theory, however, the results are
straightforward and analytical. We compare our effective mass results with
those of the tight binding theory, obtaining excellent agreement.Comment: 13 pages, 7 figures. Version submitted to PR
Valley splitting in a Si/SiGe quantum point contact
We present the theory and measurement of valley splitting in a quantum point
contact (QPC) in a modulation doped Si/SiGe heterostructure. Our measurements
are performed on a submicron Schottky-gated device. An effective mass theory is
developed for a QPC formed in a quantum well, grown on a miscut substrate. Both
theory and experiments include a perpendicular magnetic field. Our results
indicate that both QPC and magnetic confinement can enhance the valley
splitting by reducing the spatial extent of the electronic wavefunction.
Consequently, the valley splitting can be much larger than the spin splitting
for small magnetic fields. We also observe different valley splittings for
different transverse modes in the QPC, supporting the notion that when steps
are present at the quantum well interface, the spatial extent of the
wavefunction plays a dominant role in determining the valley splitting.Comment: 23 pages, 14 figure
Renormalization group approach to layered superconductors
A renormalization group theory for a system consisting of coupled
superconducting layers as a model for typical high-temperature superconducters
is developed. In a first step the electromagnetic interaction over infinitely
many layers is taken into account, but the Josephson coupling is neglected. In
this case the corrections to two-dimensional behavior due to the presence of
the other layers are very small. Next, renormalization group equations for a
layered system with very strong Josephson coupling are derived, taking into
account only the smallest possible Josephson vortex loops. The applicability of
these two limiting cases to typical high-temperature superconductors is
discussed. Finally, it is argued that the original renormalization group
approach by Kosterlitz is not applicable to a layered system with intermediate
Josephson coupling.Comment: RevTeX, 15 pages, 4 figures can be obtained from the author by
conventional mail; accepted for publication in Phys. Rev.
Renormalization Group Study of the Intrinsic Finite Size Effect in 2D Superconductors
Vortices in a thin-film superconductor interact logarithmically out to a
distance on the order of the two-dimensional (2D) magnetic penetration depth
, at which point the interaction approaches a constant. Thus,
because of the finite , the system exhibits what amounts to an
{\it intrinsic} finite size effect. It is not described by the 2D Coulomb gas
but rather by the 2D Yukawa gas (2DYG). To study the critical behavior of the
2DYG, we map the 2DYG to the massive sine-Gordon model and then perform a
renormalization group study to derive the recursion relations and to verify
that is a relevant parameter. We solve the recursion relations
to study important physical quantities for this system including the
renormalized stiffness constant and the correlation length. We also address the
effect of current on this system to explain why finite size effects are not
more prevalent in experiments given that the 2D magnetic penetration depth is a
relevant parameter.Comment: 8 pages inRevTex, 5 embedded EPS figure
The Current-Temperature Phase Diagram of Layered Superconductors
The behavior of clean layered superconductors in the presence of a finite
electric current and in zero-magnetic field behavior is addressed. The
structure of the current temperature phase diagram and the properties of each
of the four regions will be explained. We will discuss the expected current
voltage and resistance characteristics of each region as well as the effects of
finite size and weak disorder on the phase diagram. In addition, the reason for
which a weakly non-ohmic region exists above the transition temperature will be
explained.Comment: 8 pages (RevTeX), 4 encapsulated postscript figure
Centrifugal separation and equilibration dynamics in an electron-antiproton plasma
Charges in cold, multiple-species, non-neutral plasmas separate radially by
mass, forming centrifugally-separated states. Here, we report the first
detailed measurements of such states in an electron-antiproton plasma, and the
first observations of the separation dynamics in any centrifugally-separated
system. While the observed equilibrium states are expected and in agreement
with theory, the equilibration time is approximately constant over a wide range
of parameters, a surprising and as yet unexplained result. Electron-antiproton
plasmas play a crucial role in antihydrogen trapping experiments
- …