11,765 research outputs found

    Irreversible growth of binary mixtures on small-world networks

    Full text link
    Binary mixtures growing on small-world networks under far-from-equilibrium conditions are studied by means of extensive Monte Carlo simulations. For any positive value of the shortcut fraction of the network (p>0p>0), the system undergoes a continuous order-disorder phase transition, while it is noncritical in the regular lattice limit (p=0p=0). Using finite-size scaling relations, the phase diagram is obtained in the thermodynamic limit and the critical exponents are evaluated. The small-world networks are thus shown to trigger criticality, a remarkable phenomenon which is analogous to similar observations reported recently in the investigation of equilibrium systems.Comment: 7 pages, 7 figures; added/removed references and modified presentation. To appear in PR

    Netons: Vibrations of Complex Networks

    Full text link
    We consider atoms interacting each other through the topological structure of a complex network and investigate lattice vibrations of the system, the quanta of which we call {\em netons} for convenience. The density of neton levels, obtained numerically, reveals that unlike a local regular lattice, the system develops a gap of a finite width, manifesting extreme rigidity of the network structure at low energies. Two different network models, the small-world network and the scale-free network, are compared: The characteristic structure of the former is described by an additional peak in the level density whereas a power-law tail is observed in the latter, indicating excitability of netons at arbitrarily high energies. The gap width is also found to vanish in the small-world network when the connection range r=1r = 1.Comment: 9 pages, 6 figures, to appear in JP

    Monte Carlo simulation of the transmission of measles: Beyond the mass action principle

    Full text link
    We present a Monte Carlo simulation of the transmission of measles within a population sample during its growing and equilibrium states by introducing two different vaccination schedules of one and two doses. We study the effects of the contact rate per unit time ξ\xi as well as the initial conditions on the persistence of the disease. We found a weak effect of the initial conditions while the disease persists when ξ\xi lies in the range 1/L-10/L (LL being the latent period). Further comparison with existing data, prediction of future epidemics and other estimations of the vaccination efficiency are provided. Finally, we compare our approach to the models using the mass action principle in the first and another epidemic region and found the incidence independent of the number of susceptibles after the epidemic peak while it strongly fluctuates in its growing region. This method can be easily applied to other human, animals and vegetable diseases and includes more complicated parameters.Comment: 15 pages, 4 figures, 1 table, Submitted to Phys.Rev.

    Binary evolution with LOFT

    Full text link
    This is a White Paper in support of the mission concept of the Large Observatory for X-ray Timing (LOFT), proposed as a medium-sized ESA mission. We discuss the potential of LOFT for the study of very faint X-ray binaries, orbital period distribution of black hole X-ray binaries and neutron star spin up. For a summary, we refer to the paper.Comment: White Paper in Support of the Mission Concept of the Large Observatory for X-ray Timing. (v2 few typos corrected

    Neighborhood properties of complex networks

    Full text link
    A concept of neighborhood in complex networks is addressed based on the criterion of the minimal number os steps to reach other vertices. This amounts to, starting from a given network R1R_1, generating a family of networks Râ„“,â„“=2,3,...R_\ell, \ell=2,3,... such that, the vertices that are â„“\ell steps apart in the original R1R_1, are only 1 step apart in Râ„“R_\ell. The higher order networks are generated using Boolean operations among the adjacency matrices Mâ„“M_\ell that represent Râ„“R_\ell. The families originated by the well known linear and the Erd\"os-Renyi networks are found to be invariant, in the sense that the spectra of Mâ„“M_\ell are the same, up to finite size effects. A further family originated from small world network is identified

    Low prevalence, quasi-stationarity and power-law distribution in a model of spreading

    Full text link
    Understanding how contagions (information, infections, etc) are spread on complex networks is important both from practical as well as theoretical point of view. Considerable work has been done in this regard in the past decade or so. However, most models are limited in their scope and as a result only capture general features of spreading phenomena. Here, we propose and study a model of spreading which takes into account the strength or quality of contagions as well as the local (probabilistic) dynamics occurring at various nodes. Transmission occurs only after the quality-based fitness of the contagion has been evaluated by the local agent. The model exhibits quality-dependent exponential time scales at early times leading to a slowly evolving quasi-stationary state. Low prevalence is seen for a wide range of contagion quality for arbitrary large networks. We also investigate the activity of nodes and find a power-law distribution with a robust exponent independent of network topology. Our results are consistent with recent empirical observations.Comment: 7 pages, 8 figures. (Submitted

    Modelling colloids with Baxter's adhesive hard sphere model

    Full text link
    The structure of the Baxter adhesive hard sphere fluid is examined using computer simulation. The radial distribution function (which exhibits unusual discontinuities due to the particle adhesion) and static structure factor are calculated with high accuracy over a range of conditions and compared with the predictions of Percus--Yevick theory. We comment on rigidity in percolating clusters and discuss the role of the model in the context of experiments on colloidal systems with short-range attractive forces.Comment: 14 pages, 7 figures. (For proceedings of "Structural arrest in colloidal systems with short-range attractive forces", Messina, December 2003

    Dynamical and spectral properties of complex networks

    Full text link
    Dynamical properties of complex networks are related to the spectral properties of the Laplacian matrix that describes the pattern of connectivity of the network. In particular we compute the synchronization time for different types of networks and different dynamics. We show that the main dependence of the synchronization time is on the smallest nonzero eigenvalue of the Laplacian matrix, in contrast to other proposals in terms of the spectrum of the adjacency matrix. Then, this topological property becomes the most relevant for the dynamics.Comment: 14 pages, 5 figures, to be published in New Journal of Physic

    Dielectric measurements of nanoliter liquids with a photonic crystal resonator at terahertz frequencies

    Get PDF
    Data supporting Hanham SM, Watts C, Otter WJ, LucyszynS and Klein N (2015) Dielectric measurements of nanoliter liquids with a photonic crystal resonator at terahertz frequencies. Applied Physics Letters, 107 (3), Article number: 032903Data supporting Hanham SM, Watts C, Otter WJ, LucyszynS and Klein N (2015) Dielectric measurements of nanoliter liquids with a photonic crystal resonator at terahertz frequencies. Applied Physics Letters, 107 (3), Article number: 03290
    • …
    corecore