42 research outputs found

    Association of genotypes of cows of the Kholmogory breed by beta-casein with milk productivity

    Get PDF
    The aim of the study is to identify the frequency of occurrence of various allelic variants and genotypes of beta-casein in cows of the Kholmogory breed and their relationship with dairy productivity. The tasks of the research are genotyping of cattle of the Kholmogory breed by the beta-casein locus and establishing its connection with qualitative and quantitative indicators of dairy productivity. As the objects for the research there were taken 150 cows of the 1st, 2nd and 3rd lactation. An allele-specific variant of the PCR method (AS-PCR) was used to identify A1 and A2 beta-casein. As the result it had been established that in the studied part of the herd, 23 % of animals had the A2A2 genotype, 43 % of animals had the A1A1 genotype and 34 % of animals had the A1A2 genotype. For 100 days of the first lactation, animals with A1A2 genotype showed the highest value in milk yield. Animals with A2A2 genotype for 305 days of lactation had the highest milk yield and the amount of milk protein, however, the difference was not statistically significant compared to the animals with A1A2 genotype. Genotype A1A1 has lower indicators by all the parameters studied, with a significant difference relative to genotypes A1A2 and A2A2. Thus, the study of CSN2 is a promising area of scientific research, and the results of the study of beta-casein genotypes can be used as a marker selection in improving the herds of the Kholmogory breed

    ΠœΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΉ массовой Π΄ΠΎΠ»ΠΈ соСвого ΠΈΠ½Π³ΠΈΠ±ΠΈΡ‚ΠΎΡ€Π° трипсина: особСнности Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ ΠΈ аттСстации

    Get PDF
    Β  Β Modern industrialization increases the requirements for the accuracy of identifying allergens, especially those that have a negative impact – soy trypsin inhibitor (STI). Correct determination of the presence of STI in food products containing soybeans is key for product safety control and labeling. The authors set a goal to develop and certify a method for measuring the mass fraction of STI using an enzyme-linked immunosorbent assay – a technique that may increase the specificity of the method and avoid false-negative results.Β  Β The object of researchΒ was a method for analyzing food allergens – an enzyme-linked immunosorbent assay carried out with a set of reagents produced by XEMA LLC. In the process of developing the measurement method, the main methodological factors influencing the accuracy of the measurement results were optimized: sample weight, time of its extraction, time and speed of sample centrifugation, ratio of supernatant liquid to ELISA buffer, incubation temperature, interaction time of the allergen-antibody complex with the coloring agent, the wavelength for measuring absorbance, and the maximum time for measuring absorbance after introduction of the stop reagent.Β  Β The developed method was tested during an interlaboratory experiment with the participation of 5 laboratories. Metrological characteristics were established in accordance with RMG 61–2010. The proposed method was certified in accordance with the requirements of GOST R8.563-2009, No. 102–FZ. The method has a wide range of quantitative determination of the mass fraction of STI from 0.5 to 25.0 ΞΌg/kg (ppb) with a detection limit of 0.1 ΞΌg/kg (ppb) and a relative error of 40 %. Based on the results of the research, the Federal Information Fund for Ensuring the Uniformity of Measurements (FIF) registered a certified method for identifying and quantifying the content of non-infectious food allergens of plant protein origin in samples of all types of food products and objects related to the requirements for food products, swabs taken from working surfaces during production control using reagent kits for an enzyme-linked immunosorbent assay produced by XEMA LLC No. FR.1.31.2022.43884. The method is intended for use in testing laboratories involved in monitoring the quality and safety of manufactured products; it can be used to confirm product compliance with the mandatory requirements established in the Technical Regulations of the Customs Union TR CU022/2012.Β   БоврСмСнная индустриализация ΠΏΠΎΠ²Ρ‹ΡˆΠ°Π΅Ρ‚ трСбования ΠΊ точности опрСдСлСния Π°Π»Π»Π΅Ρ€Π³Π΅Π½ΠΎΠ², особСнно Π² ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΈ ΠΎΠΊΠ°Π·Ρ‹Π²Π°ΡŽΡ‰ΠΈΡ… Π½Π΅Π³Π°Ρ‚ΠΈΠ²Π½ΠΎΠ΅ воздСйствиС, срСди Π½ΠΈΡ… – соСвый ΠΈΠ½Π³ΠΈΠ±ΠΈΡ‚ΠΎΡ€ трипсина (БИВ). ΠšΠΎΡ€Ρ€Π΅ΠΊΡ‚Π½ΠΎΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ наличия БИВ Π² ΠΏΠΈΡ‰Π΅Π²Ρ‹Ρ… ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚Π°Ρ…, содСрТащих соСвыС Π±ΠΎΠ±Ρ‹, являСтся ΠΊΠ»ΡŽΡ‡Π΅Π²Ρ‹ΠΌ для контроля бСзопасности ΠΈ ΠΌΠ°Ρ€ΠΊΠΈΡ€ΠΎΠ²ΠΊΠΈ ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ†ΠΈΠΈ. БлоТилась общСпринятая ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΠ° ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡ‚ΡŒ Π°Π»Π»Π΅Ρ€Π³Π΅Π½Ρ‹ сои количСствСнно с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ аналитичСских ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² Π°Π½Π°Π»ΠΈΠ·Π°. Авторы Π΄Π°Π½Π½ΠΎΠΉ ΡΡ‚Π°Ρ‚ΡŒΠΈ поставили Ρ†Π΅Π»ΡŒ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Ρ‚ΡŒ ΠΈ Π°Ρ‚Ρ‚Π΅ΡΡ‚ΠΎΠ²Π°Ρ‚ΡŒ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΡƒ ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΉ массовой Π΄ΠΎΠ»ΠΈ БИВ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ΠΈΠΌΠΌΡƒΠ½ΠΎΡ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π½ΠΎΠ³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π° – ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΡƒ, ΡΠΏΠΎΡΠΎΠ±Π½ΡƒΡŽ ΠΏΠΎΠ²Ρ‹ΡΠΈΡ‚ΡŒ ΡΠΏΠ΅Ρ†ΠΈΡ„ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° ΠΈ ΠΈΠ·Π±Π΅ΠΆΠ°Ρ‚ΡŒ Π»ΠΎΠΆΠ½ΠΎΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² Π΅Π΅ примСнСния.Β  Β ΠžΠ±ΡŠΠ΅ΠΊΡ‚ΠΎΠΌ исслСдования стал ΠΌΠ΅Ρ‚ΠΎΠ΄ Π°Π½Π°Π»ΠΈΠ·Π° ΠΏΠΈΡ‰Π΅Π²Ρ‹Ρ… Π°Π»Π»Π΅Ρ€Π³Π΅Π½ΠΎΠ² – ΠΈΠΌΠΌΡƒΠ½ΠΎΡ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π½Ρ‹ΠΉ Π°Π½Π°Π»ΠΈΠ·, Ρ€Π΅Π°Π»ΠΈΠ·ΠΎΠ²Π°Π½Π½Ρ‹ΠΉ Π½Π°Π±ΠΎΡ€ΠΎΠΌ Ρ€Π΅Π°Π³Π΅Π½Ρ‚ΠΎΠ² производства ООО Β«Π₯Π•ΠœΠΒ».Β  Β Π’ процСссС Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΈ ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΉ ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Ρ‹ основныС мСтодичСскиС Ρ„Π°ΠΊΡ‚ΠΎΡ€Ρ‹, Π²Π»ΠΈΡΡŽΡ‰ΠΈΠ΅ Π½Π° Ρ‚ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΉ: масса ΠΏΡ€ΠΎΠ±Ρ‹, врСмя Π΅Π΅ экстракции, врСмя ΠΈ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ цСнтрифугирования ΠΏΡ€ΠΎΠ±Ρ‹, ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ надосадочной Тидкости ΠΈ ИЀА-Π±ΡƒΡ„Π΅Ρ€Π°, Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π° ΠΈΠ½ΠΊΡƒΠ±Π°Ρ†ΠΈΠΈ, врСмя взаимодСйствия комплСкса Π°Π½Ρ‚ΠΈΡ‚Π΅Π»ΠΎ-Π°Π»Π»Π΅Ρ€Π³Π΅Π½ с ΠΎΠΊΡ€Π°ΡˆΠΈΠ²Π°ΡŽΡ‰ΠΈΠΌ Π°Π³Π΅Π½Ρ‚ΠΎΠΌ, Π΄Π»ΠΈΠ½Π° Π²ΠΎΠ»Π½Ρ‹ для измСрСния оптичСской плотности ΠΈ максимальноС врСмя для измСрСния оптичСской плотности послС ввСдСния стоп-Ρ€Π΅Π°Π³Π΅Π½Ρ‚Π°. Разработанная ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° Π°ΠΏΡ€ΠΎΠ±ΠΈΡ€ΠΎΠ²Π°Π½Π° Π² Ρ…ΠΎΠ΄Π΅ ΠΌΠ΅ΠΆΠ»Π°Π±ΠΎΡ€Π°Ρ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ экспСримСнта с участиСм 5 Π»Π°Π±ΠΎΡ€Π°Ρ‚ΠΎΡ€ΠΈΠΉ. ΠœΠ΅Ρ‚Ρ€ΠΎΠ»ΠΎΠ³ΠΈΡ‡Π΅ΡΠΊΠΈΠ΅ характСристики установлСны Π² соотвСтствии с Π ΠœΠ“ 61–2010. ΠŸΡ€Π΅Π΄Π»Π°Π³Π°Π΅ΠΌΡ‹ΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ Π±Ρ‹Π» аттСстован Π² соотвСтствии с трСбованиями Π“ΠžΠ‘Π’ Π  8.563-2009, β„– 102–ЀЗ. ΠœΠ΅Ρ‚ΠΎΠ΄ ΠΈΠΌΠ΅Π΅Ρ‚ ΡˆΠΈΡ€ΠΎΠΊΠΈΠΉ Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½ количСствСнного опрСдСлСния массовой Π΄ΠΎΠ»ΠΈ БИВ ΠΎΡ‚ 0,5 Π΄ΠΎ 25,0 ΠΌΠΊΠ³/ΠΊΠ³ (ppb) с ΠΏΡ€Π΅Π΄Π΅Π»ΠΎΠΌ обнаруТСния 0,1 ΠΌΠΊΠ³/ΠΊΠ³ (ppb) ΠΈ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ ΠΏΠΎΠ³Ρ€Π΅ΡˆΠ½ΠΎΡΡ‚ΡŒΡŽ 40 %. По Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π°ΠΌ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π½ΠΎΠ³ΠΎ исслСдования Π² Π€Π΅Π΄Π΅Ρ€Π°Π»ΡŒΠ½ΠΎΠΌ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΎΠ½Π½ΠΎΠΌ Ρ„ΠΎΠ½Π΄Π΅ ΠΏΠΎ ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡Π΅Π½ΠΈΡŽ Сдинства ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΉ (ЀИЀ) зарСгистрирована аттСстованная ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° ΠΈΠ΄Π΅Π½Ρ‚ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ ΠΈ количСствСнного опрСдСлСния содСрТания Π½Π΅ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΎΠ½Π½Ρ‹Ρ… ΠΏΠΈΡ‰Π΅Π²Ρ‹Ρ… Π°Π»Π»Π΅Ρ€Π³Π΅Π½ΠΎΠ² Π±Π΅Π»ΠΊΠΎΠ²ΠΎΠ³ΠΎ Ρ€Π°ΡΡ‚ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ происхоТдСния Π² ΠΏΡ€ΠΎΠ±Π°Ρ… всСх Π²ΠΈΠ΄ΠΎΠ² ΠΏΠΈΡ‰Π΅Π²Ρ‹Ρ… ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ΠΎΠ² ΠΈ ΠΎΠ±ΡŠΠ΅ΠΊΡ‚ΠΎΠ², связанных с трСбованиями ΠΊ ΠΏΠΈΡ‰Π΅Π²ΠΎΠΉ ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ†ΠΈΠΈ, смывов, ΠΎΡ‚Π±ΠΈΡ€Π°Π΅ΠΌΡ‹Ρ… с Ρ€Π°Π±ΠΎΡ‡ΠΈΡ… повСрхностСй ΠΏΡ€ΠΈ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠΈ производствСнного контроля, с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Π½Π°Π±ΠΎΡ€ΠΎΠ² Ρ€Π΅Π°Π³Π΅Π½Ρ‚ΠΎΠ² для ΠΈΠΌΠΌΡƒΠ½ΠΎΡ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π½ΠΎΠ³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π° производства ООО Β«Π₯Π•ΠœΠΒ» β„– Π€Π .1.31.2022.43884. ΠœΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° ΠΏΡ€Π΅Π΄Π½Π°Π·Π½Π°Ρ‡Π΅Π½Π° для примСнСния Π² ΠΈΡΠΏΡ‹Ρ‚Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… лабораториях, Π·Π°Π½ΠΈΠΌΠ°ΡŽΡ‰ΠΈΡ…ΡΡ ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»Π΅ΠΌ качСства ΠΈ бСзопасности выпускаСмой ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ†ΠΈΠΈ, ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ использована для подтвСрТдСния соотвСтствия ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ†ΠΈΠΈ ΠΎΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ трСбованиям, установлСнным Π² ВСхничСском Ρ€Π΅Π³Π»Π°ΠΌΠ΅Π½Ρ‚Π΅ Π’Π°ΠΌΠΎΠΆΠ΅Π½Π½ΠΎΠ³ΠΎ союза Π’Π  Π’Π‘ 022/2012

    ELECTRONIC AND STRUCTURAL PARAMETERS OF PHOSPHORUS–OXYGEN BONDS IN INORGANIC PHOSPHATE CRYSTALS

    Full text link
    Wide set of experimental results on binding energy of photoelectrons emitted from P 2p, P 2s, and O 1s core levels has been observed for inorganic phosphate crystals and the parameters were compared using energy differences Ξ”(O 1s - P 2p) and Ξ” (O 1s - P 2s) as most robust characteristics. Linear dependence of the binding energy difference on mean chemical bond length L(P–O) between phosphorus and oxygen atoms has been found. The functions are of the forms: Ξ” (O 1s - P 2p) (eV) = 375.54 + 0.146 Β· L(P–O) (pm) and Ξ” (O 1s - P 2s) (eV) = 320.77 + 0.129 Β· L(P–O) (pm). The dependencies are general for inorganic phosphates and may be used in quantitative component analysis of X-ray photoemission spectra of complex oxide compounds including functional groups with different coordination of P and O atoms.Phosphate, XPS, crystal structure, chemical bonding

    The low thermal gradient Czochralski crystal growth and microstructural properties of a Pb2MoO5(20-1) cleaved surface

    Full text link
    Optical quality Pb2MoO5 single crystals were grown by the Low Thermal Gradient Czochralski (LTG Cz) technique. The resulting Pb2MoO5 crystals had diameters of 40–50 mm and lengths of ~100 mm. The phase composition of the grown crystals was identified by X-ray single crystal structure analysis; the space group is C2/m and a = 14.2221(11), b = 5.7852(5), c = 7.3262(6) Γ…, Ξ² = 114.168(2)Β° and Z = 4 (R1 = 0.0336). Pb2MoO5(20βˆ’1) substrates were prepared by cleavage, and the surface properties were evaluated by RHEED and AFM. The superposition of wide Kikuchi lines and crystal reflexes was found by RHEED. The AFM measurements indicate a surface roughness as low as ~0.2 nm. Thus, atomically smooth surfaces of Pb2MoO5 were formed by cleavage

    The low thermal gradient Czochralski crystal growth and microstructural properties of a Pb2MoO5(20-1) cleaved surface

    Full text link
    Optical quality Pb2MoO5 single crystals were grown by the Low Thermal Gradient Czochralski (LTG Cz) technique. The resulting Pb2MoO5 crystals had diameters of 40–50 mm and lengths of ~100 mm. The phase composition of the grown crystals was identified by X-ray single crystal structure analysis; the space group is C2/m and a = 14.2221(11), b = 5.7852(5), c = 7.3262(6) Γ…, Ξ² = 114.168(2)Β° and Z = 4 (R1 = 0.0336). Pb2MoO5(20βˆ’1) substrates were prepared by cleavage, and the surface properties were evaluated by RHEED and AFM. The superposition of wide Kikuchi lines and crystal reflexes was found by RHEED. The AFM measurements indicate a surface roughness as low as ~0.2 nm. Thus, atomically smooth surfaces of Pb2MoO5 were formed by cleavage
    corecore