3 research outputs found

    EXPERIMENTAL STUDIES AND NUMERICAL ANALYSIS FOR THE DEFORMATIONSTRENGTH CHARACTERISTICS OF RAMMED MICRO-PILES WITH A BROADENED AGGREGATE BASE

    No full text
    Objectives. Experimental and theoretical determination of dependencies of strength characteristics of bored micropiles with a pedestal formed by rammed rubble on: casing diameter, fraction, and volume of crushed stone for collapsing macroporous clays. Method. Laboratory and field experiments were carried out; numerical calculations in two-dimensional and threedimensional arrangement for the determination of strain-stress analysis of the foundation using a MIDAS GTS_NX software system, implementing the finite element method and developed for complex geotechnical problems; some recommendations for implementation are provided. Results The dependence of the load-bearing capacity of bored micropiles on a broadened base of rammed aggregate with vertical loading is determined. At the maximum broadening diameter of 3.5 of the micropiles shaft the load-bearing capacity of the subsoil is increased by between 1.8 and 6 times compared with micropiles without broadening depending on the diameter of the pile shaft. During the experimental and numerical studies of the dependencies of deformation-strength parameters of the deep foundation works consisting of a bored micropile with a broadened base, namely the pile diameter, aggregate particle size and volume, seal diameter of the subsoil soil half-space, as well as the development of the theory of formation of the end broadening geometry of rammed aggregate in the form of an ellipsoid of revolution were established. Conclusion The full-scale measurements of the broadening of bored micropiles showed that their shape is close to an ellipsoid of revolution, and the ratio of semi-axes is directly dependent on the characteristics of soil and gravel volume, which was taken into account in the construction of the finite element model in the numerical simulation experiment.The results of numerical studies of the bored micropile loading with broadened base on the MIDAS GTS show good agreement with the results of the field test, consisting of a difference of between 2 and 15%

    METHODS FOR THE ARRANGEMENT OF IMMERSED TUBE TUNNELS DURING CONSTRUCTION BASED ON STRUCTURALLY UNSTABLE SOILS

    No full text
    Objectives. The aim of the research is to develop the most effective construction and technological methods for strengthening the bottom of rivers and bays, composed of weak structurally unstable soils, including zones with seismic activity, using pile foundations with broadening and rock filling with micropiles.Methods. The method of constructing combined transport transitions was applied, consisting of overpasses running over relatively shallow channels from coasts to artificial islands on which the route enters tunnels crossing deep shipping canals.Results. The foreign experience in the construction of immersed tube tunnels in the construction of transport crossings through the extended river and sea barriers has been analytically generalised. The features, advantages and disadvantages of the construction of immersed tube tunnels in some countries of the world are revealed.Conclusion. A large number of already constructed and operated transport transits, including immersed tube tunnels, testifies to the advantages of such projects, as compared to other types of transport transitions like bridges and tunnels constructed using mining techniques. Constructiontechnological methods for strengthening the bottom of rivers and bays, composed of weak structurally unstable soils, are proposed. When selecting a design of a bridge to ensure the passage of hightonnage vessels, it is necessary to build large-span bridges on high supports. Weak, structurally unstable soils, deep bedding of bedrock and high seismicity of the area will create serious problems in the construction and operation of such structures. The natural vibration frequencies of the large-span bridges fall into the region of the dominant earthquake frequencies, which can lead to resonant phenomena and damage the structure even under weak seismic influences. Tunnels are less susceptible to seismic impacts, since, unlike ground structures, they don't experience resonance phenomena. When seismic waves pass, the tunnels are deformed in the same way as the surrounding soil massif (if the soil is solid), or much less (if the soil is weak). Deformations are usually small and do not pose a serious danger for tunnel lining. Structural and technological solutions for long transit routes through straits composed of weak soils along the bottom in the territories of disarticulated landscapes can be the most economical, reliable and acceptable when choosing the intersection by transport routes from the point of view of costs, time of construction and use of modern technologies
    corecore