825 research outputs found
The mathematical theory of resonant transducers in a spherical gravity wave antenna
The rigoruos mathematical theory of the coupling and response of a spherical
gravitational wave detector endowed with a set of resonant transducers is
presented and developed. A perturbative series in ascending powers of the
square root of the ratio of the resonator to the sphere mass is seen to be the
key to the solution of the problem. General layouts of arbitrary numbers of
transducers can be assessed, and a specific proposal (PHC), alternative to the
highly symmetric TIGA of Merkowitz and Johnson, is described in detail.
Frequency spectra of the coupled system are seen to be theoretically recovered
in full agreement with experimental determinations.Comment: 31 pages, 7 figures, LaTeX2e, \usepackage{graphicx,deleq
Gravitational and electromagnetic fields of a charged tachyon
An axially symmetric exact solution of the Einstein-Maxwell equations is
obtained and is interpreted to give the gravitational and electromagnetic
fields of a charged tachyon. Switching off the charge parameter yields the
solution for the uncharged tachyon which was earlier obtained by Vaidya. The
null surfaces for the charged tachyon are discussed.Comment: 8 pages, LaTex, To appear in Pramana- J. Physic
Losses in pendular suspensions due to centrifugal coupling
We present an analysis of the centrifugal coupling of a simple pendulum to a dissipative support. We show that such a coupling leads to an amplitude dependent quality factor. For amplitudes which could be present in laser interferometer gravitational wave detector suspensions, this mechanism could limit the quality factor of the test mass suspension significantly to 1010 and should be considered in the design of advanced LIGO type detectors
Testing Theories of Gravity with a Spherical Gravitational Wave Detector
We consider the possibility of discriminating different theories of gravity
using a recently proposed gravitational wave detector of spherical shape. We
argue that the spin content of different theories can be extracted relating the
measurements of the excited spheroidal vibrational eigenmodes to the
Newman-Penrose parameters. The sphere toroidal modes cannot be excited by any
metric GW and can be thus used as a veto.Comment: latex file, 16 pages, 1 figur
Human Adenovirus Type 36 Enhances Glucose Uptake in Diabetic and Nondiabetic Human Skeletal Muscle Cells Independent of Insulin Signaling
OBJECTIVE—Human adenovirus type 36 (Ad-36) increases adiposity but improves insulin sensitivity in experimentally infected animals. We determined the ability of Ad-36 to increase glucose uptake by human primary skeletal muscle (HSKM) cells
Particle Motion and Electromagnetic Fields of Rotating Compact Gravitating Objects with Gravitomagnetic Charge
The exact solution for the electromagnetic field occuring when the
Kerr-Taub-NUT compact object is immersed (i) in an originally uniform magnetic
field aligned along the axis of axial symmetry (ii) in dipolar magnetic field
generated by current loop has been investigated. Effective potential of motion
of charged test particle around Kerr-Taub-NUT gravitational source immersed in
magnetic field with different values of external magnetic field and NUT
parameter has been also investigated. In both cases presence of NUT parameter
and magnetic field shifts stable circular orbits in the direction of the
central gravitating object. Finally we find analytical solutions of Maxwell
equations in the external background spacetime of a slowly rotating magnetized
NUT star. The star is considered isolated and in vacuum, with monopolar
configuration model for the stellar magnetic field.Comment: 18 pages, 6 figures, new results in section 2 added, section 3 is
revised, 3 references are adde
Metabolically Favorable Remodeling of Human Adipose Tissue by Human Adenovirus Type 36
OBJECTIVE—Experimental infection of rats with human adenovirus type 36 (Ad-36) promotes adipogenesis and improves insulin sensitivity in a manner reminiscent of the pharmacologic effect of thiozolinediones. To exploit the potential of the viral proteins as a therapeutic target for treating insulin resistance, this study investigated the ability of Ad-36 to induce metabolically favorable changes in human adipose tissue
Binary black hole spectroscopy
We study parameter estimation with post-Newtonian (PN) gravitational
waveforms for the quasi-circular, adiabatic inspiral of spinning binary compact
objects. The performance of amplitude-corrected waveforms is compared with that
of the more commonly used restricted waveforms, in Advanced LIGO and EGO. With
restricted waveforms, the properties of the source can only be extracted from
the phasing. For amplitude-corrected waveforms, the spectrum encodes a wealth
of additional information, which leads to dramatic improvements in parameter
estimation. At distances of Mpc, the full PN waveforms allow for
high-accuracy parameter extraction for total mass up to several hundred solar
masses, while with the restricted ones the errors are steep functions of mass,
and accurate parameter estimation is only possible for relatively light stellar
mass binaries. At the low-mass end, the inclusion of amplitude corrections
reduces the error on the time of coalescence by an order of magnitude in
Advanced LIGO and a factor of 5 in EGO compared to the restricted waveforms; at
higher masses these differences are much larger. The individual component
masses, which are very poorly determined with restricted waveforms, become
measurable with high accuracy if amplitude-corrected waveforms are used, with
errors as low as a few percent in Advanced LIGO and a few tenths of a percent
in EGO. The usual spin-orbit parameter is also poorly determined with
restricted waveforms (except for low-mass systems in EGO), but the full
waveforms give errors that are small compared to the largest possible value
consistent with the Kerr bound. This suggests a way of finding out if one or
both of the component objects violate this bound. We also briefly discuss the
effect of amplitude corrections on parameter estimation in Initial LIGO.Comment: 28 pages, many figures. Final version accepted by CQG. More in-depth
treatment of component mass errors and detectability of Kerr bound
violations; improved presentatio
Studying stellar binary systems with the Laser Interferometer Space Antenna using Delayed Rejection Markov chain Monte Carlo methods
Bayesian analysis of LISA data sets based on Markov chain Monte Carlo methods
has been shown to be a challenging problem, in part due to the complicated
structure of the likelihood function consisting of several isolated local
maxima that dramatically reduces the efficiency of the sampling techniques.
Here we introduce a new fully Markovian algorithm, a Delayed Rejection
Metropolis-Hastings Markov chain Monte Carlo method, to efficiently explore
these kind of structures and we demonstrate its performance on selected LISA
data sets containing a known number of stellar-mass binary signals embedded in
Gaussian stationary noise.Comment: 12 pages, 4 figures, accepted in CQG (GWDAW-13 proceedings
Computational Resources to Filter Gravitational Wave Data with P-approximant Templates
The prior knowledge of the gravitational waveform from compact binary systems
makes matched filtering an attractive detection strategy. This detection method
involves the filtering of the detector output with a set of theoretical
waveforms or templates. One of the most important factors in this strategy is
knowing how many templates are needed in order to reduce the loss of possible
signals. In this study we calculate the number of templates and computational
power needed for a one-step search for gravitational waves from inspiralling
binary systems. We build on previous works by firstly expanding the
post-Newtonian waveforms to 2.5-PN order and secondly, for the first time,
calculating the number of templates needed when using P-approximant waveforms.
The analysis is carried out for the four main first-generation interferometers,
LIGO, GEO600, VIRGO and TAMA. As well as template number, we also calculate the
computational cost of generating banks of templates for filtering GW data. We
carry out the calculations for two initial conditions. In the first case we
assume a minimum individual mass of and in the second, we assume
a minimum individual mass of . We find that, in general, we need
more P-approximant templates to carry out a search than if we use standard PN
templates. This increase varies according to the order of PN-approximation, but
can be as high as a factor of 3 and is explained by the smaller span of the
P-approximant templates as we go to higher masses. The promising outcome is
that for 2-PN templates the increase is small and is outweighed by the known
robustness of the 2-PN P-approximant templates.Comment: 17 pages, 8 figures, Submitted to Class.Quant.Gra
- …