554 research outputs found
Holographic Resonant Laser Printing of metasurfaces using plasmonic template
Laser printing with a spatial light modulator (SLM) has several advantages
over conventional raster-writing and dot-matrix display (DMD) writing: multiple
pixel exposure, high power endurance and existing software for computer
generated holograms (CGH). We present a technique for the design and
manufacturing of plasmonic metasurfaces based on ultrafast laser printing with
an SLM. As a proof of principle, we have used this technique to laser print a
plasmonic metalens as well as high resolution plasmonic color decorations. The
high throughput holographic resonant laser printing (HRLP) approach enables
on-demand mass-production of customized metasurfaces.Comment: Supplementary information is available upon request to author
Absorption and eigenmode calculation for one-dimensional periodic metallic structures using the hydrodynamic approximation
We develop a modal method that solves Maxwell's equations in the presence of
the linearized hydrodynamic correction. Using this approach, it is now possible
to calculate the full diffraction for structures with period of the order of
the plasma wavelength, including not only the transverse but also the
longitudinal modes appearing above the plasma frequency. As an example for
using this method we solve the diffraction of a plane wave near the plasma
frequency from a bi-metallic layer, modeled as a continuous variation of the
plasma frequency. We observe absorption oscillations around the plasma
frequency. The lower frequency absorption peaks and dips correspond to lowest
longitudinal modes concentrated in the lower plasma frequency region. As the
frequency is increased, higher order longitudinal modes are excited and extent
to the region of higher plasma frequency. Moreover, examination of the
propagation constants of these modes reveals that the absorption peaks and dips
are directly related to the direction of phase propagation of the longitudinal
modes. Furthermore, we formulate a variant of the Plane Wave Expansion method,
and used it to calculate the dispersion diagram of such longitudinal modes in a
periodically modulated plasma frequency layer
Universal Protocols for Information Dissemination Using Emergent Signals
We consider a population of agents which communicate with each other in a
decentralized manner, through random pairwise interactions. One or more agents
in the population may act as authoritative sources of information, and the
objective of the remaining agents is to obtain information from or about these
source agents. We study two basic tasks: broadcasting, in which the agents are
to learn the bit-state of an authoritative source which is present in the
population, and source detection, in which the agents are required to decide if
at least one source agent is present in the population or not.We focus on
designing protocols which meet two natural conditions: (1) universality, i.e.,
independence of population size, and (2) rapid convergence to a correct global
state after a reconfiguration, such as a change in the state of a source agent.
Our main positive result is to show that both of these constraints can be met.
For both the broadcasting problem and the source detection problem, we obtain
solutions with a convergence time of rounds, w.h.p., from any
starting configuration. The solution to broadcasting is exact, which means that
all agents reach the state broadcast by the source, while the solution to
source detection admits one-sided error on a -fraction of the
population (which is unavoidable for this problem). Both protocols are easy to
implement in practice and have a compact formulation.Our protocols exploit the
properties of self-organizing oscillatory dynamics. On the hardness side, our
main structural insight is to prove that any protocol which meets the
constraints of universality and of rapid convergence after reconfiguration must
display a form of non-stationary behavior (of which oscillatory dynamics are an
example). We also observe that the periodicity of the oscillatory behavior of
the protocol, when present, must necessarily depend on the number ^\\# X of
source agents present in the population. For instance, our protocols inherently
rely on the emergence of a signal passing through the population, whose period
is \Theta(\log \frac{n}{^\\# X}) rounds for most starting configurations. The
design of clocks with tunable frequency may be of independent interest, notably
in modeling biological networks
"Locally homogeneous turbulence" Is it an inconsistent framework?
In his first 1941 paper Kolmogorov assumed that the velocity has increments
which are homogeneous and independent of the velocity at a suitable reference
point. This assumption of local homogeneity is consistent with the nonlinear
dynamics only in an asymptotic sense when the reference point is far away. The
inconsistency is illustrated numerically using the Burgers equation.
Kolmogorov's derivation of the four-fifths law for the third-order structure
function and its anisotropic generalization are actually valid only for
homogeneous turbulence, but a local version due to Duchon and Robert still
holds. A Kolomogorov--Landau approach is proposed to handle the effect of
fluctuations in the large-scale velocity on small-scale statistical properties;
it is is only a mild extension of the 1941 theory and does not incorporate
intermittency effects.Comment: 4 pages, 2 figure
Lift-and-Round to Improve Weighted Completion Time on Unrelated Machines
We consider the problem of scheduling jobs on unrelated machines so as to
minimize the sum of weighted completion times. Our main result is a
-approximation algorithm for some fixed , improving upon the
long-standing bound of 3/2 (independently due to Skutella, Journal of the ACM,
2001, and Sethuraman & Squillante, SODA, 1999). To do this, we first introduce
a new lift-and-project based SDP relaxation for the problem. This is necessary
as the previous convex programming relaxations have an integrality gap of
. Second, we give a new general bipartite-rounding procedure that produces
an assignment with certain strong negative correlation properties.Comment: 21 pages, 4 figure
Eigenvector Centrality Distribution for Characterization of Protein Allosteric Pathways
Determining the principal energy pathways for allosteric communication in
biomolecules, that occur as a result of thermal motion, remains challenging due
to the intrinsic complexity of the systems involved. Graph theory provides an
approach for making sense of such complexity, where allosteric proteins can be
represented as networks of amino acids. In this work, we establish the
eigenvector centrality metric in terms of the mutual information, as a mean of
elucidating the allosteric mechanism that regulates the enzymatic activity of
proteins. Moreover, we propose a strategy to characterize the range of the
physical interactions that underlie the allosteric process. In particular, the
well known enzyme, imidazol glycerol phosphate synthase (IGPS), is utilized to
test the proposed methodology. The eigenvector centrality measurement
successfully describes the allosteric pathways of IGPS, and allows to pinpoint
key amino acids in terms of their relevance in the momentum transfer process.
The resulting insight can be utilized for refining the control of IGPS
activity, widening the scope for its engineering. Furthermore, we propose a new
centrality metric quantifying the relevance of the surroundings of each
residue. In addition, the proposed technique is validated against experimental
solution NMR measurements yielding fully consistent results. Overall, the
methodologies proposed in the present work constitute a powerful and cost
effective strategy to gain insight on the allosteric mechanism of proteins
Resonant laser printing of structural colors on high-index dielectric metasurfaces
Colors of materials are precisely laser-controlled using new manufacturing technology with nanopatterned semiconductor surfaces.</jats:p
- âŠ