5 research outputs found

    Drug Susceptibility Testing of Anaerobic Protozoa

    Get PDF
    A simple technique for routine, reproducible global surveillance of the drug susceptibility status of the anaerobic protozoa Trichomonas, Entamoeba, and Giardia is described. Data collected using this technique can be readily compared among different laboratories and with previously reported data. The technique employs a commercially available sachet and bag system to generate a low-oxygen environment and log(2) drug dilutions in microtiter plates, which can be monitored without aerobic exposure, to assay drug-resistant laboratory lines and clinically resistant isolates. MICs (after 2 days) of 3.2 and 25 μM indicated metronidazole-sensitive and highly clinically resistant isolates of T. vaginalis in anaerobic assays, respectively. The aerobic MICs were 25 and >200 μM. MICs (1 day) of 12.5 to 25 μM were found for axenic lines of E. histolytica, and MICs for G. duodenalis (3 days) ranged from 6.3 μM for metronidazole-sensitive isolates to 50 μM for laboratory metronidazole-resistant lines. This technique should encourage more extensive monitoring of drug resistance in these organisms

    Drug Targets and Mechanisms of Resistance in the Anaerobic Protozoa

    No full text
    The anaerobic protozoa Giardia duodenalis, Trichomonas vaginalis, and Entamoeba histolytica infect up to a billion people each year. G. duodenalis and E. histolytica are primarily pathogens of the intestinal tract, although E. histolytica can form abscesses and invade other organs, where it can be fatal if left untreated. T. vaginalis infection is a sexually transmitted infection causing vaginitis and acute inflammatory disease of the genital mucosa. T. vaginalis has also been reported in the urinary tract, fallopian tubes, and pelvis and can cause pneumonia, bronchitis, and oral lesions. Respiratory infections can be acquired perinatally. T. vaginalis infections have been associated with preterm delivery, low birth weight, and increased mortality as well as predisposing to human immunodeficiency virus infection, AIDS, and cervical cancer. All three organisms lack mitochondria and are susceptible to the nitroimidazole metronidazole because of similar low-redox-potential anaerobic metabolic pathways. Resistance to metronidazole and other drugs has been observed clinically and in the laboratory. Laboratory studies have identified the enzyme that activates metronidazole, pyruvate:ferredoxin oxidoreductase, to its nitroso form and distinct mechanisms of decreasing drug susceptibility that are induced in each organism. Although the nitroimidazoles have been the drug family of choice for treating the anaerobic protozoa, G. duodenalis is less susceptible to other antiparasitic drugs, such as furazolidone, albendazole, and quinacrine. Resistance has been demonstrated for each agent, and the mechanism of resistance has been investigated. Metronidazole resistance in T. vaginalis is well documented, and the principal mechanisms have been defined. Bypass metabolism, such as alternative oxidoreductases, have been discovered in both organisms. Aerobic versus anaerobic resistance in T. vaginalis is discussed. Mechanisms of metronidazole resistance in E. histolytica have recently been investigated using laboratory-induced resistant isolates. Instead of downregulation of the pyruvate:ferredoxin oxidoreductase and ferredoxin pathway as seen in G. duodenalis and T. vaginalis, E. histolytica induces oxidative stress mechanisms, including superoxide dismutase and peroxiredoxin. The review examines the value of investigating both clinical and laboratory-induced syngeneic drug-resistant isolates and dissection of the complementary data obtained. Comparison of resistance mechanisms in anaerobic bacteria and the parasitic protozoa is discussed as well as the value of studies of the epidemiology of resistance

    Liver Flukes

    No full text
    corecore