271 research outputs found

    Risk Assessment of Land Degradation Using Satellite Imagery and Geospatial Modelling in Ukraine

    Get PDF
    In this publication, the authors considered the effect of unprecedented human activity into land degradation and desertification processes in Ukraine. The land degradation mapping technique based on processing of a two-level model for multispectral satellite imagery of low and medium spatial resolution was described. This technique was used to investigate land degradation and desertification within relatively pristine and human-inspired mining and industrial landscapes located in the central, southern, and eastern parts of Ukraine. In each particular case, the authors offered thematic land degradation maps obtained as a result of multispectral images processing, allowed assessing the state and tendencies in land degradation processes within the study areas. Data obtained visually emphasize the level of anthropogenic stress, impact of long-term change of vegetation cover, and correlation of intensive development of mining, construction, agricultural and other human activities with high level of land degradation within investigated areas. The transition to adaptive farming systems implies the achievement of maximum compatibility between soil and plant, development of crop rotation, soil conservation tillage system. Conducted research on the creation of adaptive systems of crop production takes into account the environmental, landscape and geochemical peculiarities of the steppe zone of Ukraine, to get the production of environmentally safe agricultural products. They can be used in further studies of a differentiated approach to achieving a balanced potential of agricultural landscapes. Remote detecting of degradation and desertification processes intensification at early stages will be able to promote further measures for improving the territories conditions. The further research has to be directed on development of geoinformation technologies for landscape changes remote mapping

    FPSoC using Xilinx Zynq for medical image coding based on the quaternionic paraunitary filter banks

    Get PDF
    In this paper, we have introduced a low-cost FPSoC for medical image coding and implemented to telemedicine applications based on the Xilinx Zynq. We have recently introduced a generalized block-lifting structure using the 2-D CORDIC algorithm as a block of 4- and 8-band linear phase paraunitary filter banks (LP PUFB) based on the quaternionic algebra (Q-PUFB) with one-regularity constraints on hypercomplex coefficients of the schemes for the lossy-to-lossless image coding. Its structure can implement the integer-to-integer transform (I-Q-PUFB). The parallel-pipelined efficient architecture (P2E_Q-PUFB) has been proposed. The low latency separable image processing is implemented in the given architecture

    Low read-only memory distributed arithmetic implementation of quaternion multiplier using split matrix approach

    Get PDF
    In most algorithms that use quaternion numbers, the key operation is a quaternion multiplication, of which the efficiency and accuracy obviously determine the same properties of the whole computational scheme of a filter or transform. A digit (L-bit)-serial quaternion multiplier based on the distributed arithmetic (DA) using the splitting of the multiplication matrix is presented. The circuit provides the facility to compute several products of quaternion components concurrently as well as to reduce the memory capacity by half in comparison with the known DA-based multiplier, and it is well suited for field programmable gate array (FPGA)-based fixed-point implementations of the algorithms. Apart from a theoretical development, the experimental design results which are obtained using a Xilinx Virtex 6 FPGA are reported

    Pipelined block-lifting-based embedded processor for multiplying quaternions using distributed arithmetic

    Get PDF
    This paper presents a systematic design of the of the integer-to-integer invertible quaternionic multiplier based on the block-lifting structure and pipelined embedded processor of the given multiplier using distributed arithmetic (DA) as a block of M-band linear phase paraunitary filter banks (LP PUFB) based on the quaternionic algebra (Q-PUFB) for the lossy-to-lossless image coding. A bank Q-PUFB based on the DA block-lifting structure reduces the number of rounding operations and has a regular layout. Since the block-lifting structures with rounding operations can implement the integer-to-integer transform (Q-PUFB)

    Fabrication and properties of L-arginine-doped PCL electrospun composite scaffolds

    Full text link
    The article describes fabrication and properties of composite fibrous scaffolds obtained by electrospinning of the solution of poly({\epsilon}-caprolactone) and arginine in common solvent. The influence of arginine content on structure, mechanical, surface and biological properties of the scaffolds was investigated. It was found that with an increase of arginine concentration diameter of the scaffold fibers was reduced, which was accompanied by an increase of scaffold strength and Young modulus. It was demonstrated that porosity and water contact angle of the scaffold are independent from arginine content. The best cell adhesion and viability was shown on scaffolds with arginine concentration from 0.5 to 1 % wt

    CORDIC-lifting factorization of paraunitary filter banks based on the quaternionic multipliers for lossless image coding

    Get PDF
    Quaternions have offered a new paradigm to the signal processing community: to operate directly in a multidimensional domain. We have recently introduced the quaternionic approach to the design and implementation of paraunitary filter banks: four- and eight-channel linear-phase paraunitary filter banks, including those with pairwise-mirror-image symmetric frequency responses. The hypercomplex number theory is utilized to derive novel lattice structures in which quaternion multipliers replace Givens (planar) rotations. Unlike the conventional algorithms, the proposed computational schemes maintain losslessness regardless of their coefficient quantization. Moreover, the one regularity conditions can be expressed directly in terms of the quaternion lattice coefficients and thus easily satisfied even in finite-precision arithmetic. In this paper, a novel approach to realizing CORDIC-lifting factorization of paraunitary filter banks is presented, which is based on the embedding of the CORDIC algorithm inside the lifting scheme. Lifting allows for making multiplications invertible. The 2D CORDIC engine using sparse iterations and asynchronous pipeline processor architecture based on the embedded CORDIC engine as stage of processor is reported. Also it is necessary to notice, that the quaternion multiplier lifting scheme based on the 2D CORDIC algorithm is the structural decision for the lossless digital signal processing. This approach applies to very practical filter banks, which are essential for image processing, and addresses interesting theoretical questions

    Design and high-performance hardware architecture for image coding using block-lifting-based quaternionic paraunitary filter banks

    Get PDF
    In this paper, we have introduced a generalized block-lifting structure using the 2-D CORDIC algorithm as a block of 4-band linear phase paraunitary filter banks (LP PUFB) based on the quaternionic algebra (Q-PUFB) for the lossy-to-lossless image coding. A bank Q-PUFB based on the 2-D CORDIC block-lifting structure reduces the number of rounding operations and has a regular layout. Since the block-lifting structures with rounding operations can implement the integer-to-integer transform (Q-PUFB). The parallel-pipelined efficient architecture (P2E_Q-PUFB) has been proposed. The low latency separable image processing is implemented in the given architecture

    Features of pulsed synchronization of a systems with a tree-dimensional phase space

    Full text link
    Features of synchronization picture in the system with the limit cycle embedded in a three-dimensional phase space are considered. By the example of Ressler system and Dmitriev - Kislov generator under the action of a periodic sequence of delta - function it is shown, that synchronization picture significantly depends on the direction of pulse action. Features of synchronization tons appeared in these models are observed.Comment: 16 pages, 11 figure
    corecore