7 research outputs found

    Influence of compost characteristics on heavy metal sorption from synthetic stormwater

    Full text link
    This paper has the aim to assess the ability of garden derived compost to remove dissolved heavy metal contaminants typically found in stormwater. Compost was found to have excellent chemical and physical properties for the sorption of dissolved metal ions (Cu2+, Pb2+ and Zn2+). Batch sorption data were used to determine the sorption efficiency of Cu (93%), Zn (88%) and Pb (97%) by compost. The relative sorption affinity of these metals by compost is found to be in the order of Pb2+ > Cu2+ ε1 Zn2+. The effect of different particle size fractions of compost upon the sorption of Cu was also investigated. Sorption conformed to the linear form of the Freundlich isotherm and can be considered favourable because the sorption intensity values obtained in this study are between 0.1 and 1. Compost with a smaller particle size fraction has larger surface areas and greater sorption than the larger particle size fraction. Compost derived from garden waste is efficient for removal of heavy metals from wastewater or treating water for industries. © IWA Publishing 2007

    Pollutant removal efficiency of alternative filtration media in stormwater treatment

    Full text link
    Sorption experiments were used to assess the ability of various materials (sand, compost, packing wood, ash, zeolite, recycled glass and Enviro-media) to remove heavy metal contaminants typically found in stormwater. Compost was found to have the best physicochemical properties for sorption of metal ions (Cu, Zn and Pb) compared with sand, packing wood, ash, zeolite and Enviro-media. The compost sorption of these metal ions conformed to the linear form of the Langmuir adsorption equation with the Langmuir constants (qm) for Zn(II) being 11.2 mg/g at pH 5. However, compost was also found to leach a high concentration of dissolved organic carbon (DOC, 4.31 mg/g), compared with the other tested materials. Various combinations of sand, compost and other materials were observed to have excellent heavy metal removal (75-96% of Zn and 90-93% of Cu), with minimal DOC leaching (0.0013-2.43 mg/g). The sorption efficiency of the different Enviro-media mixes showed that a combination of traditional (sand) and alternative materials can be used as an effective medium for the treatment of dissolved metal contaminants commonly found in stormwater. The application of using recycled organic materials and other waste materials (such as recycled glass) also provides added value to the products life cycle. © IWA Publishing 2006

    A comparison of organic wastes as bioadsorbents of heavy metal cations in aqueous solution and their capacity for desorption and regeneration

    No full text
    The adsorption capacity of seven organic wastes/by-products (slash pine, red gum and western cypress bark, composted green waste, prawn exoskeletons, spent brewery yeast and mill mud from a sugar mill) for transition metals were determined at two metal concentrations (10 and 100 mg L ) and three equilibrium pH values (4.0, 6.0 and 8.0) in batch adsorption experiments. All tested materials indicate a positive affinity to adsorb metal cations from aqueous solution and spent yeast was the least effective. Adsorption generally increased with increasing pH and the order of selectivity of metals was: Cr > Cu > Pb > Zn ≥ Cd . For pine bark, compost, spent yeast and prawn shell, quantities of previously adsorbed Pb and Cd desorbed in 0.01 M NaNO electrolyte were negligible. However, 0.01 M HNO , and more particularly 0.10 and 0.50 M HNO were effective at removing both adsorbed Pb and Cd. Using 0.10 M HNO as the regenerating agent, pine bark and compost maintained their Pb and Cd adsorption capacity over eight successive adsorption/regeneration cycles. For mill mud and prawn shell, there was a pronounced decrease in adsorption capacity after only one regeneration cycle. A subsidiary experiment confirmed that acid pre-treatment of the latter two materials appreciably reduced their Pb and Cd adsorption capacity. This was ascribed to the metal adsorption capacity of prawn shell and mill mud being partially attributable to their significant CaCO content and acid treatment induces dissolution of the CaCO . It was shown that in relation to both adsorption capacity and desorption/regeneration capability, composted green waste showed the greatest potential
    corecore