115 research outputs found
Identification and mapping of yield and yield related QTLs from an Indian accession of Oryza rufipogon
BACKGROUND: Cultivated rice (Oryza sativa L.) is endowed with a rich genetic variability. In spite of such a great diversity, the modern rice cultivars have narrow genetic base for most of the agronomically important traits. To sustain the demand of an ever increasing population, new avenues have to be explored to increase the yield of rice. Wild progenitor species present potential donor sources for complex traits such as yield and would help to realize the dream of sustained food security. RESULTS: Advanced backcross method was used to introgress and map new quantitative trait loci (QTLs) relating to yield and its components from an Indian accession of Oryza rufipogon. An interspecific BC(2) testcross progeny (IR58025A/O. rufipogon//IR580325B///IR58025B////KMR3) was evaluated for 13 agronomic traits pertaining to yield and its components. Transgressive segregants were obtained for all the traits. Thirty nine QTLs were identified using interval mapping and composite interval mapping. In spite of it's inferiority for most of the traits studied, O. rufipogon alleles contributed positively to 74% of the QTLs. Thirty QTLs had corresponding occurrences with the QTLs reported earlier, indicating that these QTLs are stable across genetic backgrounds. Nine QTLs are novel and reported for the first time. CONCLUSION: The study confirms that the progenitor species constitute a prominent source of still unfolded variability for traits of complex inheritance like yield. With the availability of the complete genome sequence of rice and the developments in the field of genomics, it is now possible to identify the genes underlying the QTLs. The identification of the genes constituting QTLs would help us to understand the molecular mechanisms behind the action of QTLs
Burn septicaemia in Kuwait: associated demographic and clinical factors
Objective: To study the demographic and clinical factors associated with burn septicaemia patients in Kuwait. Materials and Methods: All burn in-patients, who developed septicaemia at the Burns Unit, Al-Babtain Centre for Burns and Plastic Surgery, Kuwait, during a 9-year period (June 1992 to May 2001) were included in the study. The data were recorded for age, sex, nationality, cause and percentage of burns, inhalation injury, resuscitation, number of episodes, septicaemia on post-burn day, the microorganisms responsible in each episode, treatment and outcome for statistical analysis. Using SPSS (PC version 11.0) software, a probability level of p<0.05 was considered significant. Results: Of the 2,082 patients treated in the Burns Unit, 166 [8%; 99 (60%) males and 67 (40%) females] with a mean age of 26 years (range 1-70) had septicaemia. Significantly higher (p <0.001) cases were recorded among Kuwaiti children (≤14 years) and non-Kuwaitis (25-59 years) than other corresponding age groups. The total body surface area burned ranged from 2 to 95% (mean 42%) and the main cause of burn was flame (77.1%). Inhalation injury was diagnosed in 39 (23.5%) patients. A total of 253 septicaemic episodes occurred in all patients. The majority, 123 (74.1%), had a single episode and the remaining 43 (25.6%) had multiple (2-10) episodes. One hundred and fifty-five (61.3%) episodes were due to gram-positive organisms, mainly methicillin-resistant Staphylococcus aureus, and 32 (12.7%) were polymicrobial. One hundred and twenty-four (74.7%) patients had wound excision and skin grafting procedures and their survival was significantly higher (OR=4.3; 95% CI: 1.98-9.31) than nonsurgically treated patients. Thirty-nine (23.5%) patients died mainly due to multi-organ failure. Conclusion: The findings indicate that the patients with extensive flame burns were prone to developing septicaemia due mainly to gram-positive bacteria. The surgical excision of eschar and wound covering improved the outcome of the patients while prophylactic antibiotic treatment had no role in the incidence and outcome of the burn patients
Evaluating rice germplasm for iron and zinc concentration in brown rice and seed dimensions
The lack of micronutrients such as Fe and Zn in staple food crops is a widespread nutrition and health problem in developing countries. Biofortification is one of the sustainable approaches, for improving the Fe and Zn content and their bioavailability in rice grain. Screening germplasm for Fe and Zn content is the initial step of biofortification. We analyzed brown rice of 126 accessions of rice genotypes for Fe and Zn concentration. Iron concentration ranged from 6.2 ppm to 71.6 ppm and zinc from 26.2 ppm to 67.3 ppm. Zn concentration and grain elongation (-0.25) was significantly correlated. The wild accessions had the highest Fe and Zn. Thus, wild species are a good source for biofortification of popular rice cultivars using conventional, acceptable, non transgenic methods. Â
QTL Analysis for Grain Iron and Zinc Concentrations in Two O. nivara Derived Backcross Populations
Identification of quantitative trait loci (QTLs) for grain mineral elements can assist in faster and more precise development of micronutrient dense rice varieties through marker-assisted breeding. In the present study, QTLs were mapped for Fe and Zn concentrations in two BC2F3 mapping populations derived from the crosses of O. sativa cv Swarna with two different accessions of O. nivara. In all, 10 and 8 QTLs were identified for grain Fe and Zn concentrations in population 1, and 7 and 5 QTLs were identified in population 2, respectively. Eighty percent of the QTLs detected in both populations were derived from O. nivara. Five QTLs for Fe and three QTLs for Zn explained more than 15% phenotypic variance either in interval or composite interval mapping. The locations of O. nivara derived QTLs such as qFe2.1, qFe3.1, qFe8.2 and qZn12.1 were consistently identified in both the populations. Epistatic interaction was observed only between RM106 and RM6 on chromosome 2 and between RM22 and RM7 on chromosome 3 for Fe concentration in population 1. Sixteen candidate genes for metal homeostasis were found to co-locate with 10 QTLs for Fe and Zn concentrations in both the populations. Most of the Fe and Zn QTLs were found to co-locate with QTLs for grain yield and grain quality traits. Some of the major effect QTLs identified can be used to improve rice grain Fe and Zn concentrations
A multi-dimensional approach from seed-to-seed to understand and improve heat stress tolerance in rice
In changing climatic conditions, stress caused by high temperature
poses a serious threat to rice cultivation. Physiological,
biochemical, and molecular analysis of rice cultivars revealed
that Nagina22 (N22) shows lesser reduction in chlorophyll content,
net photosynthetic rate, spikelet fertility and grain yield,
but increased membrane thermal stability, antioxidant enzymes
activity and transpiration rate (E) at high temperature. DREB,
RAB, LEA, and genes associated with hormones signalling were
induced during germination, while OsFd (an iron sulphur cluster
binding protein) and CWIP (cell wall integrity protein) emerged
as high priority candidate genes in seedling and reproductive
stages. Their function is being analysed by transgene expression
and CRISPR/Cas genome editing approaches. Field screening
in polyhouse, late sowing and temperature gradient chamber
for 20 morpho-physiological traits indicated the importance of
both yield and spikelet fertility, and photosynthesis traits. N22
showed the least Heat Susceptibility Index (HSI) for yield/plant,
spikelet fertility, flag leaf SPAD and stomatal conductance, while
Vandana showed the highest HSI for spikelet fertility and flag leaf
temperature. QTLs for HSI of spikelet fertility were identified on
chromosome 1 and HSI of yield per plant on chromosomes 1, 2, 3,
4, 7 and 8; and PV of 6% to 57% using 174 F2-3 Vandana x N22
mapping population. Simultaneously, RNAseq was performed
to identify the genome wide miRNAs and transcriptome of N22
and Vandana from shoot and root after short and long duration
of heat stress treatments; and recovery phase for an eQTL-guided
function-related co-expression analysis to identify the putative
regulators and gene regulatory networks
Expression Dynamics of Genes and microRNAs at Different Growth Stages and Heat Treatments in Contrasting High Temperature Responsive Rice Genotypes
The global warming-driven climate change is becoming a major challenge for rice cultivation in Asia and Africa. High-temperature stress impairs the physiology and growth of rice plant, and ultimately results in reduced grain yield. This study was aimed to decipher the physiological and molecular changes occurring during different growth stages of heat-tolerant (N22) and -susceptible (Vandana) rice cultivars under three different heat treatments. Chlorophyll content, membrane integrity, gas exchange parameters and expression of genes and miRNAs were analyzed in N22 and Vandana at seedling, vegetative, and reproductive growth stages after exposing to short and long duration of high temperature stress, and recovery. A number of genes and miRNAs showed dynamic changes in their expression patterns at different growth stages and heat treatments, highlighting the necessity to understand gene regulation before employing the genes for modification through transgenic or gene editing approaches. Predominantly N22 showed distinct and unique capability to reprogram its physiological and molecular machinery during prolonged heat stress at reproductive stage, suggesting that the dynamics in gene regulation
is crucial to determine its heat tolerant ability. The study has larger implications in deploying genes for the development of heat tolerant rice cultivars through breeding, transgenic, and genome editing approaches
Deep sequencing of small RNAs reveals ribosomal origin of microRNAs in Oryza sativa and their regulatory role in high temperature
MicroRNAs are small noncoding regulatory RNAs which control gene expression by mRNA degradation or translational repression. They are significant molecular players regulating important biological processes such as developmental timing and stress response. We report here the discovery of miRNAs derived from ribosomal DNA using the small RNA datasets of 16 deep sequencing libraries of rice. Twelve putative miRNAs were identified based on highly stringent criteria of novel miRNA prediction. Surprisingly, 10 putative miRNAs (mi_7403, mi_8435, mi_12675, mi_4266, mi_4758, mi_4218, mi_8200, mi_4644, mi_14291, mi_16235) originated from rDNA of rice chromosome 9. Expression analysis of putative miRNAs and their target genes in heat tolerant and susceptible rice cultivars in control and high temperature treated seedlings revealed differential regulation of rDNA derived miRNAs. This is the first report of rDNA derived miRNAs in rice which indicates their role in gene regulation during high temperature stress in plants. Further studies in this area will open new research challenges and opportunities to broaden our knowledge on gene regulation mechanisms
Why NERICA is a successful innovation for African farmers
This paper responds to ‘Funding international agricultural research and the need to be noticed: a case study of NERICA rice’ by Stuart Orr, James Sumberg, Olaf Erenstein and Andreas Oswald, published in this issue of Outlook on Agriculture.
In summary, the article by Orr et al, based on an internal WARDA document written in November 2003 and augmented with results from Internet searches, is outdated and does not seem to be fair, objective or useful. We invite the authors to visit WARDA or any of its partners in Sub-Saharan Africa for evidence of the impact of NERICA varieties or the other improved varieties and technologies that have been developed and disseminated by WARDA in recent years
African Rice (Oryza glaberrima Steud.): Lost Crop of the Enslaved Africans Discovered in Suriname1
African Rice (Oryza glaberrimaSteud.): Lost Crop of the Enslaved Africans Discovered in Suriname. African rice (Oryza glaberrima Steud.) was introduced to the Americas during the slave trade years and grown by enslaved Africans for decades before mechanical milling devices facilitated the shift towards Asian rice (O. sativa L.). Literature suggests that African rice is still grown in Guyana and French Guiana, but the most recent herbarium voucher dates from 1938. In this paper, evidence is presented that O. glaberrima is still grown by Saramaccan Maroons both for food and ritual uses. Saramaccan informants claim their forefathers collected their first “black rice” from a mysterious wild rice swamp and cultivated these seeds afterwards. Unmilled spikelets (grains with their husk still attached) are sold in small quantities for ancestor offerings, and even exported to the Netherlands to be used by Maroon immigrants. Little is known of the evolution of O. glaberrima, before and after domestication. Therefore, more research is needed on the different varieties of rice and other “lost crops” grown by these descendants of enslaved Africans who escaped from plantations in the 17th and 18th centuries and maintained much of their African cultural heritage in the deep rainforest
Patterns of Sequence Divergence and Evolution of the S1 Orthologous Regions between Asian and African Cultivated Rice Species
A strong postzygotic reproductive barrier separates the recently diverged Asian and African cultivated rice species, Oryza sativa and O. glaberrima. Recently a model of genetic incompatibilities between three adjacent loci: S1A, S1 and S1B (called together the S1 regions) interacting epistatically, was postulated to cause the allelic elimination of female gametes in interspecific hybrids. Two candidate factors for the S1 locus (including a putative F-box gene) were proposed, but candidates for S1A and S1B remained undetermined. Here, to better understand the basis of the evolution of regions involved in reproductive isolation, we studied the genic and structural changes accumulated in the S1 regions between orthologous sequences. First, we established an 813 kb genomic sequence in O. glaberrima, covering completely the S1A, S1 and the majority of the S1B regions, and compared it with the orthologous regions of O. sativa. An overall strong structural conservation was observed, with the exception of three isolated regions of disturbed collinearity: (1) a local invasion of transposable elements around a putative F-box gene within S1, (2) the multiple duplication and subsequent divergence of the same F-box gene within S1A, (3) an interspecific chromosomal inversion in S1B, which restricts recombination in our O. sativa×O. glaberrima crosses. Beside these few structural variations, a uniform conservative pattern of coding sequence divergence was found all along the S1 regions. Hence, the S1 regions have undergone no drastic variation in their recent divergence and evolution between O. sativa and O. glaberrima, suggesting that a small accumulation of genic changes, following a Bateson-Dobzhansky-Muller (BDM) model, might be involved in the establishment of the sterility barrier. In this context, genetic incompatibilities involving the duplicated F-box genes as putative candidates, and a possible strengthening step involving the chromosomal inversion might participate to the reproductive barrier between Asian and African rice species
- …