3 research outputs found
ΠΠΏΡΡΠ½ΠΎ-ΡΠ΅ΠΎΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ Π°ΠΊΡΠΈΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΠ°ΡΡΠΈΡ ΡΠ²Π΅ΡΠ΄ΠΎΠΉ ΡΠ°Π·Ρ Π² ΠΊΠΈΠΏΡΡΠ΅ΠΌ ΡΠ»ΠΎΠ΅
The article presents the results of computational and experimental studies of the distribution of a model material (plastic spherical particles with a size of 6 mm) along the height of a laboratory two-dimensional apparatus of the fluidized bed of the periodic principle of action. To experimentally determine the distribution of the solid phase over the height of the apparatus, digital photographs of the fluidized bed were taken, which were then analyzed using an algorithm that had been specially developed for this purpose. The algorithm involved splitting the image by height into separate rectangular areas, identifying the particles and counting their number in each of these areas. Numerical experiments were performed using the previously proposed one-dimensional cell model of the fluidization process, constructed on the basis of the mathematical apparatus of the theory of Markov chains with discrete space and time. The design scheme of the model assumes the spatial decomposition of the layer in height into individual elements of small finite sizes. Thus, the numerically obtained results qualitatively corresponded to the full-scale field experiment that had been set up. To ensure the quantitative reliability of the calculated forecasts, a parametric identification of the model was performed using known empirical dependencies to calculate the particle resistance coefficient and estimate the coefficient of their macrodiffusion. A comparison of the results of numerical and field experiments made us possible to identify the most productive empirical dependencies that correspond to the cellular scheme of modeling the process. The resulting physical and mathematical model has a high predictive efficiency and can be used for engineering calculations of devices with a fluidized bed, as well as for setting and solving problems of optimal control of technological processes in these devices for various target functions.Π ΡΡΠ°ΡΡΠ΅ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½Ρ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ ΡΠ°ΡΡΠ΅ΡΠ½ΡΡ
ΠΈ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΡΡ
ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΉ ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΌΠΎΠ΄Π΅Π»ΡΠ½ΠΎΠ³ΠΎ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Π° (ΠΏΠ»Π°ΡΡΠΌΠ°ΡΡΠΎΠ²ΡΡ
ΡΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠ°ΡΡΠΈΡ ΡΠ°Π·ΠΌΠ΅ΡΠΎΠΌ 6 ΠΌΠΌ) ΠΏΠΎ Π²ΡΡΠΎΡΠ΅ Π»Π°Π±ΠΎΡΠ°ΡΠΎΡΠ½ΠΎΠ³ΠΎ Π΄Π²ΡΠΌΠ΅ΡΠ½ΠΎΠ³ΠΎ Π°ΠΏΠΏΠ°ΡΠ°ΡΠ° ΠΊΠΈΠΏΡΡΠ΅Π³ΠΎ ΡΠ»ΠΎΡ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΏΡΠΈΠ½ΡΠΈΠΏΠ° Π΄Π΅ΠΉΡΡΠ²ΠΈΡ. ΠΠ»Ρ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΠ²Π΅ΡΠ΄ΠΎΠΉ ΡΠ°Π·Ρ ΠΏΠΎ Π²ΡΡΠΎΡΠ΅ Π°ΠΏΠΏΠ°ΡΠ°ΡΠ° Π²ΡΠΏΠΎΠ»Π½Π΅Π½Ρ ΡΠΈΡΡΠΎΠ²ΡΠ΅ ΡΠΎΡΠΎΠ³ΡΠ°ΡΠΈΠΈ ΠΊΠΈΠΏΡΡΠ΅Π³ΠΎ ΡΠ»ΠΎΡ, ΠΊΠΎΡΠΎΡΡΠ΅ Π·Π°ΡΠ΅ΠΌ Π°Π½Π°Π»ΠΈΠ·ΠΈΡΠΎΠ²Π°Π»ΠΈΡΡ ΠΏΡΠΈ ΠΏΠΎΠΌΠΎΡΠΈ ΡΠΏΠ΅ΡΠΈΠ°Π»ΡΠ½ΠΎ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠ°Π½Π½ΠΎΠ³ΠΎ Π΄Π»Ρ ΡΡΠΎΠ³ΠΎ Π°Π»Π³ΠΎΡΠΈΡΠΌΠ°. ΠΠ»Π³ΠΎΡΠΈΡΠΌ ΠΏΠΎΠ΄ΡΠ°Π·ΡΠΌΠ΅Π²Π°Π» ΡΠ°Π·Π±ΠΈΠ΅Π½ΠΈΠ΅ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΡ ΠΏΠΎ Π²ΡΡΠΎΡΠ΅ Π½Π° ΠΎΡΠ΄Π΅Π»ΡΠ½ΡΠ΅ ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΡΠ΅ ΠΎΠ±Π»Π°ΡΡΠΈ, ΠΈΠ΄Π΅Π½ΡΠΈΡΠΈΠΊΠ°ΡΠΈΡ ΡΠ°ΡΡΠΈΡ ΠΈ ΠΏΠΎΠ΄ΡΡΠ΅Ρ ΠΈΡ
ΡΠΈΡΠ»Π° Π² ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΠΈΠ· ΡΠΊΠ°Π·Π°Π½Π½ΡΡ
ΠΎΠ±Π»Π°ΡΡΠ΅ΠΉ. Π§ΠΈΡΠ»Π΅Π½Π½ΡΠ΅ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΡ Π²ΡΠΏΠΎΠ»Π½ΡΠ»ΠΈΡΡ Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΠΏΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½Π½ΠΎΠΉ ΡΠ°Π½Π΅Π΅ ΠΎΠ΄Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠΉ ΡΡΠ΅Π΅ΡΠ½ΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ ΠΏΡΠΎΡΠ΅ΡΡΠ° ΠΏΡΠ΅Π²Π΄ΠΎΠΎΠΆΠΈΠΆΠ΅Π½ΠΈΡ, ΠΏΠΎΡΡΡΠΎΠ΅Π½Π½ΠΎΠΉ Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ Π°ΠΏΠΏΠ°ΡΠ°ΡΠ° ΡΠ΅ΠΎΡΠΈΠΈ ΡΡΠ΅ΡΠ½ΡΡ
ΡΠ΅ΠΏΠ΅ΠΉ ΠΠ°ΡΠΊΠΎΠ²Π° Ρ Π΄ΠΈΡΠΊΡΠ΅ΡΠ½ΡΠΌ ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²ΠΎΠΌ ΠΈ Π²ΡΠ΅ΠΌΠ΅Π½Π΅ΠΌ. Π Π°ΡΡΠ΅ΡΠ½Π°Ρ ΡΡ
Π΅ΠΌΠ° ΠΌΠΎΠ΄Π΅Π»ΠΈ ΠΏΡΠ΅Π΄ΠΏΠΎΠ»Π°Π³Π°Π΅Ρ ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π΅Π½Π½ΡΡ Π΄Π΅ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡΠΈΡ ΡΠ»ΠΎΡ ΠΏΠΎ Π²ΡΡΠΎΡΠ΅ Π½Π° ΠΎΡΠ΄Π΅Π»ΡΠ½ΡΠ΅ ΡΠ»Π΅ΠΌΠ΅Π½ΡΡ ΠΌΠ°Π»ΡΡ
ΠΊΠΎΠ½Π΅ΡΠ½ΡΡ
ΡΠ°Π·ΠΌΠ΅ΡΠΎΠ². Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, ΠΏΠΎΠ»ΡΡΠ°Π΅ΠΌΡΠ΅ ΡΠΈΡΠ»Π΅Π½Π½ΠΎ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠΌ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠΈ ΠΎΡΠ²Π΅ΡΠ°ΡΡ ΠΏΠΎΡΡΠ°Π²Π»Π΅Π½Π½ΠΎΠΌΡ Π½Π°ΡΡΡΠ½ΠΎΠΌΡ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΡ. ΠΠ»Ρ ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠ΅Π½ΠΈΡ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠΉ Π΄ΠΎΡΡΠΎΠ²Π΅ΡΠ½ΠΎΡΡΠΈ ΡΠ°ΡΡΠ΅ΡΠ½ΡΡ
ΠΏΡΠΎΠ³Π½ΠΎΠ·ΠΎΠ² Π²ΡΠΏΠΎΠ»Π½Π΅Π½Π° ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΠΈΠ΄Π΅Π½ΡΠΈΡΠΈΠΊΠ°ΡΠΈΡ ΠΌΠΎΠ΄Π΅Π»ΠΈ Ρ ΠΏΡΠΈΠ²Π»Π΅ΡΠ΅Π½ΠΈΠ΅ΠΌ ΠΈΠ·Π²Π΅ΡΡΠ½ΡΡ
ΡΠΌΠΏΠΈΡΠΈΡΠ΅ΡΠΊΠΈΡ
Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠ΅ΠΉ Π΄Π»Ρ ΡΠ°ΡΡΠ΅ΡΠ° ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠ° ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ ΡΠ°ΡΡΠΈΡ ΠΈ ΠΎΡΠ΅Π½ΠΊΠΈ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠ° ΠΈΡ
ΠΌΠ°ΠΊΡΠΎΠ΄ΠΈΡΡΡΠ·ΠΈΠΈ. Π‘ΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠ² ΡΠΈΡΠ»Π΅Π½Π½ΡΡ
ΠΈ Π½Π°ΡΡΡΠ½ΡΡ
ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠΎΠ² ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΎ Π²ΡΠ΄Π΅Π»ΠΈΡΡ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ ΠΏΡΠΎΠ΄ΡΠΊΡΠΈΠ²Π½ΡΠ΅ ΡΠΌΠΏΠΈΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠΎΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ, ΡΠΎΡΠ΅ΡΠ°ΡΡΠΈΠ΅ΡΡ Ρ ΡΡΠ΅Π΅ΡΠ½ΠΎΠΉ ΡΡ
Π΅ΠΌΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΏΡΠΎΡΠ΅ΡΡΠ°. ΠΠΎΠ»ΡΡΠ΅Π½Π½Π°Ρ ΡΠΈΠ·ΠΈΠΊΠΎ-ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΠΌΠΎΠ΄Π΅Π»Ρ ΠΎΠ±Π»Π°Π΄Π°Π΅Ρ Π²ΡΡΠΎΠΊΠΎΠΉ ΠΏΡΠΎΠ³Π½ΠΎΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΡΡ ΠΈ ΠΌΠΎΠΆΠ΅Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡΡΡ Π΄Π»Ρ ΠΈΠ½ΠΆΠ΅Π½Π΅ΡΠ½ΡΡ
ΡΠ°ΡΡΠ΅ΡΠΎΠ² Π°ΠΏΠΏΠ°ΡΠ°ΡΠΎΠ² Ρ ΠΊΠΈΠΏΡΡΠΈΠΌ ΡΠ»ΠΎΠ΅ΠΌ, Π° ΡΠ°ΠΊΠΆΠ΅ Π΄Π»Ρ ΠΏΠΎΡΡΠ°Π½ΠΎΠ²ΠΊΠΈ ΠΈ ΡΠ΅ΡΠ΅Π½ΠΈΡ Π·Π°Π΄Π°Ρ ΠΎΠΏΡΠΈΠΌΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ ΠΏΡΠΎΡΠ΅ΡΡΠ°ΠΌΠΈ Π² ΡΡΠΈΡ
Π°ΠΏΠΏΠ°ΡΠ°ΡΠ°Ρ
ΠΏΠΎ ΡΠ°Π·Π»ΠΈΡΠ½ΡΠΌ ΡΠ΅Π»Π΅Π²ΡΠΌ ΡΡΠ½ΠΊΡΠΈΡΠΌ
Π Π°ΡΡΠ΅ΡΠ½ΠΎ-ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΠΎΠ΅ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ Π»ΠΎΠΊΠ°Π»ΡΠ½ΡΡ Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊ ΠΏΡΠΎΡΠ΅ΡΡΠ° ΠΏΡΠ΅Π²Π΄ΠΎΠΎΠΆΠΈΠΆΠ΅Π½ΠΈΡ ΡΠΎΠΏΠ»ΠΈΠ²Π½ΡΡ Π³ΡΠ°Π½ΡΠ»
. Currently, there is a tendency to diversify the generation of heat and electricity and to improve solid fuel technologies. These trends actualize the search for mathematical tools for describing and predicting the operation of apparatuses with a fluidized bed of dispersed fuel materials. However, since the mechanics of heterogeneous media (and dispersed media in particular) is to a certain extent in its infancy in relation to the mathematical foundations of modeling, it is often difficult to predict the operation of equipment. In particular, the poor quality of mathematical basis does not allow predicting the fields of concentrations and velocities of the phases of the fluidized bed, although this knowledge serves as the fundamental basis for calculating heat and mass transfer and chemical processes. In the present work, a computational and experimental study of the local hydromechanical characteristics of a monodisperse fluidized bed has been carried out. The mathematical apparatus of the theory of Markov chains was used as a basis for modeling. The tasks were solved in a one-dimensional formulation, which implied the division of the bed in height into cells of small but finite sizes. Fluidized bed phase distributions were described by state vectors whose evolution was controlled by transition probability matrices. The elements of these matrices were matched to the physical parameters of the processes. The model was verified by comparing the calculated predictions with the data of a full-scale experiment conducted as part of the study, aimed at measuring the local velocities of the gas phase inside the fluidized bed. The experimental data with a good accuracy for engineering calculations were described by the proposed model, which makes it possible to consider it as a reliable scientific basis for the computer method for calculating installations using the fluidization technique.Π Π½Π°ΡΡΠΎΡΡΠ΅Π΅ Π²ΡΠ΅ΠΌΡ Π½Π°Π±Π»ΡΠ΄Π°Π΅ΡΡΡ ΡΠ΅Π½Π΄Π΅Π½ΡΠΈΡ ΠΊ Π΄ΠΈΠ²Π΅ΡΡΠΈΡΠΈΠΊΠ°ΡΠΈΠΈ Π³Π΅Π½Π΅ΡΠ°ΡΠΈΠΈ ΡΠ΅ΠΏΠ»ΠΎΠ²ΠΎΠΉ ΠΈ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ½Π΅ΡΠ³ΠΈΠΈ ΠΈ ΠΊ ΡΠΎΠ²Π΅ΡΡΠ΅Π½ΡΡΠ²ΠΎΠ²Π°Π½ΠΈΡ ΡΠ²Π΅ΡΠ΄ΠΎΡΠΎΠΏΠ»ΠΈΠ²Π½ΡΡ
ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΠΉ. Π£ΠΊΠ°Π·Π°Π½Π½ΡΠ΅ ΡΠ΅Π½Π΄Π΅Π½ΡΠΈΠΈ Π°ΠΊΡΡΠ°Π»ΠΈΠ·ΠΈΡΡΡΡ ΠΏΠΎΠΈΡΠΊ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΈΠ½ΡΡΡΡΠΌΠ΅Π½ΡΠΎΠ² Π΄Π»Ρ ΠΎΠΏΠΈΡΠ°Π½ΠΈΡ ΠΈ ΠΏΡΠΎΠ³Π½ΠΎΠ·ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΡΠ°Π±ΠΎΡΡ Π°ΠΏΠΏΠ°ΡΠ°ΡΠΎΠ² Ρ ΠΏΡΠ΅Π²Π΄ΠΎΠΎΠΆΠΈΠΆΠ΅Π½Π½ΡΠΌ ΡΠ»ΠΎΠ΅ΠΌ Π΄ΠΈΡΠΏΠ΅ΡΡΠ½ΡΡ
ΡΠΎΠΏΠ»ΠΈΠ²Π½ΡΡ
ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΠΎΠ². ΠΠ΄Π½Π°ΠΊΠΎ, ΠΏΠΎΡΠΊΠΎΠ»ΡΠΊΡ ΠΌΠ΅Ρ
Π°Π½ΠΈΠΊΠ° Π³Π΅ΡΠ΅ΡΠΎΠ³Π΅Π½Π½ΡΡ
ΡΡΠ΅Π΄ (ΠΈ Π΄ΠΈΡΠΏΠ΅ΡΡΠ½ΡΡ
ΡΡΠ΅Π΄, Π² ΡΠ°ΡΡΠ½ΠΎΡΡΠΈ) Π² ΠΈΠ·Π²Π΅ΡΡΠ½ΠΎΠΉ ΠΌΠ΅ΡΠ΅ Π½Π°Ρ
ΠΎΠ΄ΠΈΡΡΡ Π² ΡΡΠ°Π΄ΠΈΠΈ ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΈΡ Π² ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠΈ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΎΡΠ½ΠΎΠ² ΠΌΠΎΠ΄Π΅Π»ΠΈΡΠΎΠ²Π°Π½ΠΈΡ, ΠΏΡΠΎΠ³Π½ΠΎΠ·ΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ ΡΠ°Π±ΠΎΡΡ Π°ΠΏΠΏΠ°ΡΠ°ΡΡΡΡ ΡΠ°ΡΡΠΎ Π·Π°ΡΡΡΠ΄Π½ΠΈΡΠ΅Π»ΡΠ½ΠΎ. Π ΡΠ°ΡΡΠ½ΠΎΡΡΠΈ, Π½ΠΈΠ·ΠΊΠΎΠ΅ ΠΊΠ°ΡΠ΅ΡΡΠ²ΠΎ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠ΅Π½ΠΈΡ Π½Π΅ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΠΏΡΠΎΠ³Π½ΠΎΠ·ΠΈΡΠΎΠ²Π°ΡΡ ΠΏΠΎΠ»Ρ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΠΉ ΠΈ ΡΠΊΠΎΡΠΎΡΡΠ΅ΠΉ ΡΠ°Π· ΠΏΡΠ΅Π²Π΄ΠΎΠΎΠΆΠΈΠΆΠ΅Π½Π½ΠΎΠ³ΠΎ ΡΠ»ΠΎΡ, Ρ
ΠΎΡΡ ΡΡΠΈ Π·Π½Π°Π½ΠΈΡ ΡΠ»ΡΠΆΠ°Ρ ΠΏΠ΅ΡΠ²ΠΎΠΎΡΠ½ΠΎΠ²ΠΎΠΉ Π΄Π»Ρ ΡΠ°ΡΡΠ΅ΡΠ° ΡΠ΅ΠΏΠ»ΠΎ- ΠΈ ΠΌΠ°ΡΡΠΎΠΎΠ±ΠΌΠ΅Π½Π½ΡΡ
ΠΈ Ρ
ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΏΡΠΎΡΠ΅ΡΡΠΎΠ². Π Π½Π°ΡΡΠΎΡΡΠ΅ΠΉ ΡΠ°Π±ΠΎΡΠ΅ Π²ΡΠΏΠΎΠ»Π½Π΅Π½ΠΎ ΡΠ°ΡΡΠ΅ΡΠ½ΠΎΠ΅ ΠΈ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΠΎΠ΅ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ Π»ΠΎΠΊΠ°Π»ΡΠ½ΡΡ
Π³ΠΈΠ΄ΡΠΎΠΌΠ΅Ρ
Π°Π½ΠΈΡΠ΅ΡΠΊΠΈΡ
Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊ ΠΌΠΎΠ½ΠΎΠ΄ΠΈΡΠΏΠ΅ΡΡΠ½ΠΎΠ³ΠΎ ΠΏΡΠ΅Π²Π΄ΠΎΠΎΠΆΠΈΠΆΠ΅Π½Π½ΠΎΠ³ΠΎ ΡΠ»ΠΎΡ. Π ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΠΎΡΠ½ΠΎΠ²Ρ ΠΌΠΎΠ΄Π΅Π»ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΡΡΡ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠΉ Π°ΠΏΠΏΠ°ΡΠ°Ρ ΡΠ΅ΠΎΡΠΈΠΈ ΡΠ΅ΠΏΠ΅ΠΉ ΠΠ°ΡΠΊΠΎΠ²Π°. ΠΠ°Π΄Π°ΡΠΈ ΡΠ΅ΡΠ°ΡΡΡΡ Π² ΠΎΠ΄Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠΉ ΠΏΠΎΡΡΠ°Π½ΠΎΠ²ΠΊΠ΅, ΠΏΠΎΠ΄ΡΠ°Π·ΡΠΌΠ΅Π²Π°ΡΡΠ΅ΠΉ ΡΠ°Π·Π±ΠΈΠ΅Π½ΠΈΠ΅ ΡΠ»ΠΎΡ ΠΏΠΎ Π²ΡΡΠΎΡΠ΅ Π½Π° ΡΡΠ΅ΠΉΠΊΠΈ ΠΌΠ°Π»ΡΡ
, Π½ΠΎ ΠΊΠΎΠ½Π΅ΡΠ½ΡΡ
ΡΠ°Π·ΠΌΠ΅ΡΠΎΠ². Π Π°ΡΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΠ°Π· ΡΠ»ΠΎΡ ΠΎΠΏΠΈΡΡΠ²Π°ΡΡΡΡ Π²Π΅ΠΊΡΠΎΡΠ°ΠΌΠΈ ΡΠΎΡΡΠΎΡΠ½ΠΈΠΉ, ΡΠ²ΠΎΠ»ΡΡΠΈΡ ΠΊΠΎΡΠΎΡΡΡ
ΠΊΠΎΠ½ΡΡΠΎΠ»ΠΈΡΡΡΡ ΠΌΠ°ΡΡΠΈΡΡ ΠΏΠ΅ΡΠ΅Ρ
ΠΎΠ΄Π½ΡΡ
Π²Π΅ΡΠΎΡΡΠ½ΠΎΡΡΠ΅ΠΉ. ΠΠ»Π΅ΠΌΠ΅Π½ΡΡ ΡΡΠΈΡ
ΠΌΠ°ΡΡΠΈΡ Π±ΡΠ»ΠΈ ΠΏΠΎΡΡΠ°Π²Π»Π΅Π½Ρ Π² ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΠΈΠ΅ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΈΠΌ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠ°ΠΌ ΠΏΡΠΎΡΠ΅ΡΡΠΎΠ². ΠΠ΅ΡΠΈΡΠΈΠΊΠ°ΡΠΈΡ ΠΌΠΎΠ΄Π΅Π»ΠΈ Π²ΡΠΏΠΎΠ»Π½Π΅Π½Π° ΠΏΡΡΠ΅ΠΌ ΡΠΎΠΏΠΎΡΡΠ°Π²Π»Π΅Π½ΠΈΡ ΡΠ°ΡΡΠ΅ΡΠ½ΡΡ
ΠΏΡΠΎΠ³Π½ΠΎΠ·ΠΎΠ² Ρ Π΄Π°Π½Π½ΡΠΌΠΈ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½Π½ΠΎΠ³ΠΎ Π² ΡΠ°ΠΌΠΊΠ°Ρ
ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ Π½Π°ΡΡΡΠ½ΠΎΠ³ΠΎ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°, Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½Π½ΠΎΠ³ΠΎ Π½Π° ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅ Π»ΠΎΠΊΠ°Π»ΡΠ½ΡΡ
ΡΠΊΠΎΡΠΎΡΡΠ΅ΠΉ Π³Π°Π·ΠΎΠ²ΠΎΠΉ ΡΠ°Π·Ρ Π²Π½ΡΡΡΠΈ ΠΏΡΠ΅Π²Π΄ΠΎΠΎΠΆΠΈΠΆΠ΅Π½Π½ΠΎΠ³ΠΎ ΡΠ»ΠΎΡ. ΠΠ°Π½Π½ΡΠ΅ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ° Ρ Ρ
ΠΎΡΠΎΡΠ΅ΠΉ Π΄Π»Ρ ΠΈΠ½ΠΆΠ΅Π½Π΅ΡΠ½ΡΡ
ΡΠ°ΡΡΠ΅ΡΠΎΠ² ΡΠΎΡΠ½ΠΎΡΡΡΡ Π±ΡΠ»ΠΈ ΠΎΠΏΠΈΡΠ°Π½Ρ ΠΏΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½Π½ΠΎΠΉ ΡΠΈΠ·ΠΈΠΊΠΎ-ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΡΡ, ΡΡΠΎ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°ΡΡ Π΅Π΅ ΠΊΠ°ΠΊ Π΄ΠΎΡΡΠΎΠ²Π΅ΡΠ½ΡΡ Π½Π°ΡΡΠ½ΡΡ ΠΎΡΠ½ΠΎΠ²Ρ ΠΊΠΎΠΌΠΏΡΡΡΠ΅ΡΠ½ΠΎΠ³ΠΎ ΠΌΠ΅ΡΠΎΠ΄Π° ΡΠ°ΡΡΠ΅ΡΠ° ΠΊΠΎΡΠ»ΠΎΠ°Π³ΡΠ΅Π³Π°ΡΠΎΠ², ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡΠΈΡ
ΡΠ΅Ρ
Π½ΠΈΠΊΡ ΠΏΡΠ΅Π²Π΄ΠΎΠΎΠΆΠΈΠΆΠ΅Π½ΠΈΡ