104 research outputs found

    Electrode Polarization Effects in Broadband Dielectric Spectroscopy

    Get PDF
    In the present work, we provide broadband dielectric spectra showing strong electrode polarization effects for various materials, belonging to very different material classes. This includes both ionic and electronic conductors as, e.g., salt solutions, ionic liquids, human blood, and colossal-dielectric-constant materials. These data are intended to provide a broad data base enabling a critical test of the validity of phenomenological and microscopic models for electrode polarization. In the present work, the results are analyzed using a simple phenomenological equivalent-circuit description, involving a distributed parallel RC circuit element for the modeling of the weakly conducting regions close to the electrodes. Excellent fits of the experimental data are achieved in this way, demonstrating the universal applicability of this approach. In the investigated ionically conducting materials, we find the universal appearance of a second dispersion region due to electrode polarization, which is only revealed if measuring down to sufficiently low frequencies. This indicates the presence of a second charge-transport process in ionic conductors with blocking electrodes.Comment: 9 pages, 6 figures, experimental data are provided in electronic form (see "Data Conservancy"

    The Flux-Line Lattice in Superconductors

    Full text link
    Magnetic flux can penetrate a type-II superconductor in form of Abrikosov vortices. These tend to arrange in a triangular flux-line lattice (FLL) which is more or less perturbed by material inhomogeneities that pin the flux lines, and in high-TcT_c supercon- ductors (HTSC's) also by thermal fluctuations. Many properties of the FLL are well described by the phenomenological Ginzburg-Landau theory or by the electromagnetic London theory, which treats the vortex core as a singularity. In Nb alloys and HTSC's the FLL is very soft mainly because of the large magnetic penetration depth: The shear modulus of the FLL is thus small and the tilt modulus is dispersive and becomes very small for short distortion wavelength. This softness of the FLL is enhanced further by the pronounced anisotropy and layered structure of HTSC's, which strongly increases the penetration depth for currents along the c-axis of these uniaxial crystals and may even cause a decoupling of two-dimensional vortex lattices in the Cu-O layers. Thermal fluctuations and softening may melt the FLL and cause thermally activated depinning of the flux lines or of the 2D pancake vortices in the layers. Various phase transitions are predicted for the FLL in layered HTSC's. The linear and nonlinear magnetic response of HTSC's gives rise to interesting effects which strongly depend on the geometry of the experiment.Comment: Review paper for Rep.Prog.Phys., 124 narrow pages. The 30 figures do not exist as postscript file

    Epidemiology and etiology of Parkinson’s disease: a review of the evidence

    Full text link

    Age-hardening characteristics of Cu–2.4Ni–0.6Si alloy produced by the spray forming process

    No full text
    The microstructural features and heat treatment response of a spray formed Cu–2.4Ni–0.6Si (wt.%) alloy have been investigated. The alloy was aged at 450 ◩C either in the as spray formed condition or after a cold deformation of 40% reduction in original thickness. Some of the samples were subjected to a solution treatment at 900 ◩C for 1 h prior to their cold deformation to 40% of original thickness and subsequent ageing. The variation in hardness and electrical conductivity of the alloys wasmeasured as a function of ageing time. The results indicated the highest peak hardness value of approximately 250 kgfmm−2 for the alloy aged after the solution treatment and cold rolling, compared to the maximum hardness of 220 kgfmm−2 for samples aged directly in as spray formed condition. However, the electrical conductivity was observed to be a maximum of 62% IACS in samples which had only been cold rolled. This behaviour is discussed in the light of microstructural characteristics associated with different processing conditions of this alloy

    Fusarium head blight and associated mycotoxin occurrence on winter wheat in Luxembourg in 2007/2008

    Full text link
    Fusarium head blight (FHB) is among the major causes of reduced quality in winter wheat and its products. In addition, the causal fungi produce a variety of toxins. A relatively high FHB infection rate in winter wheat was observed in 2007 and 2008 in Luxembourg. A fusariotoxin survey was carried out in 17 different geographical locations. Three groups of Fusarium mycotoxins (trichothecenes A and B and zearalenone) were analysed by a multi-detection HPLC–MS/MS method. Fusarium strains were also investigated by morphological and molecular methods. In addition, questionnaires relating to cultural practices were sent to the farmers managing the 17 fields investigated. FHB prevalence ranged from 0.3 to 65.8% (mean: 8.5%) in 2007 and from 0 to 24.5% (mean: 8.3%) in 2008. Results of morphological and molecular identification showed that the most common species isolated from diseased wheat spikes was F. graminearum (33.1%), followed by F. avenaceum (20.3%) and F. poae (17.8%). The chemical analysis revealed that 75% of the investigated fields were contaminated by deoxynivalenol (DON, range 0–8111 mg/kg). The preceding crop was highly and significantly correlated to the number of grains infected and had a significant impact on disease prevalence ( pÂŒ0.025 and 0.017, respectively, Fisher’s F-test). A trend was found for maize as the preceding crop ( pÂŒ0.084, Tukey’s test) to predict the amount of DON in the fields. This is the first report on the occurrence of DON and ZON in naturally infected wheat grains sampled from Luxembourg

    Semantic Engineering

    No full text

    Semantic challenges for sensor plug and play

    No full text
    Abstract. The goal of the Sensor Web Enablement (SWE) initiative of the Open Geospatial Consortium (OGC) is the definition of web service interfaces and data encodings to make sensors discoverable, taskable and accessible on the World Wide Web. The SWE specifications enable a standardized communication and interaction with arbitrary types of sensors and sensor systems. The central concepts within OGC’s Sensor Web architecture are sensors, observations and features of interest. Sensors and their observations can be registered and stored through the Sensor Observation Service (SOS) to make them accessible for clients. So far, mechanisms are missing which support a semantic matching between features of interest stored in a database and referred to by an observation. The same applies for the matching between observations as sensor outputs and the properties of the features of interest. By taking a use case from disaster management, we outline the challenges and demonstrate how semantically annotated SWE data models and service interfaces support semantic matching. The result is a roadmap towards a semantically enabled sensor plug & play within the Sensor Web.
    • 

    corecore