40 research outputs found
Spin-orbit coupling and phase-coherence in InAs nanowires
We investigated the magnetotransport of InAs nanowires grown by selective
area metal-organic vapor phase epitaxy. In the temperature range between 0.5
and 30 K reproducible fluctuations in the conductance upon variation of the
magnetic field or the back-gate voltage are observed, which are attributed to
electron interference effects in small disordered conductors. From the
correlation field of the magnetoconductance fluctuations the phase-coherence
length l_phi is determined. At the lowest temperatures l_phi is found to be at
least 300 nm, while for temperatures exceeding 2 K a monotonous decrease of
l_phi with temperature is observed. A direct observation of the weak
antilocalization effect indicating the presence of spin-orbit coupling is
masked by the strong magnetoconductance fluctuations. However, by averaging the
magnetoconductance over a range of gate voltages a clear peak in the
magnetoconductance due to the weak antilocalization effect was resolved. By
comparison of the experimental data to simulations based on a recursive
two-dimensional Green's function approach a spin-orbit scattering length of
approximately 70 nm was extracted, indicating the presence of strong spin-orbit
coupling.Comment: 8 pages, 7 figure
Architectures and Key Technical Challenges for 5G Systems Incorporating Satellites
Satellite Communication systems are a promising solution to extend and
complement terrestrial networks in unserved or under-served areas. This aspect
is reflected by recent commercial and standardisation endeavours. In
particular, 3GPP recently initiated a Study Item for New Radio-based, i.e., 5G,
Non-Terrestrial Networks aimed at deploying satellite systems either as a
stand-alone solution or as an integration to terrestrial networks in mobile
broadband and machine-type communication scenarios. However, typical satellite
channel impairments, as large path losses, delays, and Doppler shifts, pose
severe challenges to the realisation of a satellite-based NR network. In this
paper, based on the architecture options currently being discussed in the
standardisation fora, we discuss and assess the impact of the satellite channel
characteristics on the physical and Medium Access Control layers, both in terms
of transmitted waveforms and procedures for enhanced Mobile BroadBand (eMBB)
and NarrowBand-Internet of Things (NB-IoT) applications. The proposed analysis
shows that the main technical challenges are related to the PHY/MAC procedures,
in particular Random Access (RA), Timing Advance (TA), and Hybrid Automatic
Repeat reQuest (HARQ) and, depending on the considered service and
architecture, different solutions are proposed.Comment: Submitted to Transactions on Vehicular Technologies, April 201
Complex and unexpected dynamics in simple genetic regulatory networks
Peer reviewedPublisher PD
Role of Caustic Addition in Bitumen-Clay Interactions
Coating of bitumen by clays, known as slime coating, is detrimental to bitumen recovery from oil sands using the warm slurry extn. process. Sodium hydroxide (caustic) is added to the extn. process to balance many competing processing challenges, which include undesirable slime coating. The current research aims at understanding the role of caustic addn. in controlling interactions of bitumen with various types of model clays. The interaction potential was studied by quartz crystal microbalance with dissipation monitoring (QCM-D). After confirming the slime coating potential of montmorillonite clays on bitumen in the presence of calcium ions, the interaction of kaolinite and illite with bitumen was studied. To represent more closely the industrial applications, tailings water from bitumen extn. tests at different caustic dosage was used. At caustic dosage up to 0.5 wt % oil sands ore, a negligible coating of kaolinite on the bitumen was detd. However, at a lower level of caustic addn., illite was shown to attach to the bitumen, with the interaction potential decreasing with increasing caustic dosage. Increasing concn. of humic acids as a result of increasing caustic dosage was identified to limit the interaction potential of illite with bitumen. This fundamental study clearly shows that the crit. role of caustics in modulating interactions of clays with bitumen depends upon the type of clays. Thus, clay type was identified as a key operational variable
Development of a new assessment tool for cervical myelopathy using hand-tracking sensor: Part 1: validity and reliability
Purpose To assess the reliability and validity of a hand motion sensor, Leap Motion Controller (LMC), in the 15-s hand grip-and-release test, as compared against human inspection of an external digital camera recording.
Methods Fifty healthy participants were asked to fully grip-and-release their dominant hand as rapidly as possible for two trials with a 10-min rest in-between, while wearing a non-metal wrist splint. Each test lasted for 15 s, and a digital camera was used to film the anterolateral side of the hand on the first test. Three assessors counted the frequency of grip-and-release (G-R) cycles independently and in a blinded fashion. The average mean of the three was compared with that measured by LMC using the Bland–Altman method. Test–retest reliability was examined by comparing the two 15-s tests.
Results The mean number of G-R cycles recorded was: 47.8 ± 6.4 (test 1, video observer); 47.7 ± 6.5 (test 1, LMC); and 50.2 ± 6.5 (test 2, LMC). Bland–Altman indicated good agreement, with a low bias (0.15 cycles) and narrow limits of agreement. The ICC showed high inter-rater agreement and the coefficient of repeatability for the number of cycles was ±5.393, with a mean bias of 3.63.
Conclusions LMC appears to be valid and reliable in the 15-s grip-and-release test. This serves as a first step towards the development of an objective myelopathy assessment device and platform for the assessment of neuromotor hand function in general. Further assessment in a clinical setting and to gauge healthy benchmark values is
warranted
Medication errors in the Middle East countries: a systematic review of the literature
Background: Medication errors are a significant global concern and can cause serious medical consequences for
patients. Little is known about medication errors in Middle
Eastern countries. The objectives of this systematic review
were to review studies of the incidence and types of medication errors in Middle Eastern countries and to identify the main contributory factors involved.
Methods: A systematic review of the literature related to medication errors in Middle Eastern countries was conducted in October 2011 using the following databases: Embase, Medline, Pubmed, the British Nursing Index and the Cumulative Index to Nursing & Allied Health Literature. The search strategy included all ages and languages. Inclusion criteria were that the studies assessed or discussed the incidence of medication errors and contributory factors to medication errors during the medication treatment process in adults or in children.
Results: Forty-five studies from 10 of the 15 Middle Eastern
countries met the inclusion criteria. Nine (20%) studies focused on medication errors in paediatric patients. Twenty-one focused on prescribing errors, 11 measured administration errors, 12 were interventional studies and one assessed transcribing errors. Dispensing and documentation errors were inadequately evaluated. Error rates varied from 7.1% to 90.5% for prescribing and from 9.4% to 80% for administration.
The most common types of prescribing errors reported
were incorrect dose (with an incidence rate from 0.15% to
34.8% of prescriptions), wrong frequency and wrong
strength. Computerised physician rder entry and clinical pharmacist input were the main interventions evaluated. Poor
knowledge of medicines was identified as a contributory
factor for errors by both doctors (prescribers) and nurses
(when administering drugs). Most studies did not assess the
clinical severity of the medication errors.
Conclusion: Studies related to medication errors in the Middle Eastern countries were relatively few in number and of poor quality. Educational programmes on drug therapy for doctors and nurses are urgently needed
Effects of hospital facilities on patient outcomes after cancer surgery: an international, prospective, observational study
Background Early death after cancer surgery is higher in low-income and middle-income countries (LMICs) compared with in high-income countries, yet the impact of facility characteristics on early postoperative outcomes is unknown. The aim of this study was to examine the association between hospital infrastructure, resource availability, and processes on early outcomes after cancer surgery worldwide.Methods A multimethods analysis was performed as part of the GlobalSurg 3 study-a multicentre, international, prospective cohort study of patients who had surgery for breast, colorectal, or gastric cancer. The primary outcomes were 30-day mortality and 30-day major complication rates. Potentially beneficial hospital facilities were identified by variable selection to select those associated with 30-day mortality. Adjusted outcomes were determined using generalised estimating equations to account for patient characteristics and country-income group, with population stratification by hospital.Findings Between April 1, 2018, and April 23, 2019, facility-level data were collected for 9685 patients across 238 hospitals in 66 countries (91 hospitals in 20 high-income countries; 57 hospitals in 19 upper-middle-income countries; and 90 hospitals in 27 low-income to lower-middle-income countries). The availability of five hospital facilities was inversely associated with mortality: ultrasound, CT scanner, critical care unit, opioid analgesia, and oncologist. After adjustment for case-mix and country income group, hospitals with three or fewer of these facilities (62 hospitals, 1294 patients) had higher mortality compared with those with four or five (adjusted odds ratio [OR] 3.85 [95% CI 2.58-5.75]; p<0.0001), with excess mortality predominantly explained by a limited capacity to rescue following the development of major complications (63.0% vs 82.7%; OR 0.35 [0.23-0.53]; p<0.0001). Across LMICs, improvements in hospital facilities would prevent one to three deaths for every 100 patients undergoing surgery for cancer.Interpretation Hospitals with higher levels of infrastructure and resources have better outcomes after cancer surgery, independent of country income. Without urgent strengthening of hospital infrastructure and resources, the reductions in cancer-associated mortality associated with improved access will not be realised
Effect of Si-doping on InAs nanowire transport and morphology
The effect of Si-doping on the morphology, structure, and transport properties of nanowires was investigated. The nanowires were deposited by selective-area metal organic vapor phase epitaxy in an N-2 ambient. It is observed that doping systematically affects the nanowire morphology but not the structure of the nanowires. However, the transport properties of the wires are greatly affected. Room-temperature four-terminal measurements show that with an increasing dopant supply the conductivity monotonously increases. For the highest doping level the conductivity is higher by a factor of 25 compared to only intrinsically doped reference nanowires. By means of back-gate field-effect transistor measurements it was confirmed that the doping results in an increased carrier concentration. Temperature dependent resistance measurements reveal, for lower doping concentrations, a thermally activated semiconductor-type increase of the conductivity. In contrast, the nanowires with the highest doping concentration show a metal-type decrease of the resistivity with decreasing temperature. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3631026