9,891 research outputs found

    Dynamic Interference Mitigation for Generalized Partially Connected Quasi-static MIMO Interference Channel

    Full text link
    Recent works on MIMO interference channels have shown that interference alignment can significantly increase the achievable degrees of freedom (DoF) of the network. However, most of these works have assumed a fully connected interference graph. In this paper, we investigate how the partial connectivity can be exploited to enhance system performance in MIMO interference networks. We propose a novel interference mitigation scheme which introduces constraints for the signal subspaces of the precoders and decorrelators to mitigate "many" interference nulling constraints at a cost of "little" freedoms in precoder and decorrelator design so as to extend the feasibility region of the interference alignment scheme. Our analysis shows that the proposed algorithm can significantly increase system DoF in symmetric partially connected MIMO interference networks. We also compare the performance of the proposed scheme with various baselines and show via simulations that the proposed algorithms could achieve significant gain in the system performance of randomly connected interference networks.Comment: 30 pages, 10 figures, accepted by IEEE Transaction on Signal Processin

    Decentralized Dynamic Hop Selection and Power Control in Cognitive Multi-hop Relay Systems

    Full text link
    In this paper, we consider a cognitive multi-hop relay secondary user (SU) system sharing the spectrum with some primary users (PU). The transmit power as well as the hop selection of the cognitive relays can be dynamically adapted according to the local (and causal) knowledge of the instantaneous channel state information (CSI) in the multi-hop SU system. We shall determine a low complexity, decentralized algorithm to maximize the average end-to-end throughput of the SU system with dynamic spatial reuse. The problem is challenging due to the decentralized requirement as well as the causality constraint on the knowledge of CSI. Furthermore, the problem belongs to the class of stochastic Network Utility Maximization (NUM) problems which is quite challenging. We exploit the time-scale difference between the PU activity and the CSI fluctuations and decompose the problem into a master problem and subproblems. We derive an asymptotically optimal low complexity solution using divide-and-conquer and illustrate that significant performance gain can be obtained through dynamic hop selection and power control. The worst case complexity and memory requirement of the proposed algorithm is O(M^2) and O(M^3) respectively, where MM is the number of SUs

    Limited Feedback Design for Interference Alignment on MIMO Interference Networks with Heterogeneous Path Loss and Spatial Correlations

    Full text link
    Interference alignment is degree of freedom optimal in K -user MIMO interference channels and many previous works have studied the transceiver designs. However, these works predominantly focus on networks with perfect channel state information at the transmitters and symmetrical interference topology. In this paper, we consider a limited feedback system with heterogeneous path loss and spatial correlations, and investigate how the dynamics of the interference topology can be exploited to improve the feedback efficiency. We propose a novel spatial codebook design, and perform dynamic quantization via bit allocations to adapt to the asymmetry of the interference topology. We bound the system throughput under the proposed dynamic scheme in terms of the transmit SNR, feedback bits and the interference topology parameters. It is shown that when the number of feedback bits scales with SNR as C_{s}\cdot\log\textrm{SNR}, the sum degrees of freedom of the network are preserved. Moreover, the value of scaling coefficient C_{s} can be significantly reduced in networks with asymmetric interference topology.Comment: 30 pages, 6 figures, accepted by IEEE transactions on signal processing in Feb. 201

    CSI Feedback Reduction for MIMO Interference Alignment

    Full text link
    Interference alignment (IA) is a linear precoding strategy that can achieve optimal capacity scaling at high SNR in interference networks. Most of the existing IA designs require full channel state information (CSI) at the transmitters, which induces a huge CSI signaling cost. Hence it is desirable to improve the feedback efficiency for IA and in this paper, we propose a novel IA scheme with a significantly reduced CSI feedback. To quantify the CSI feedback cost, we introduce a novel metric, namely the feedback dimension. This metric serves as a first-order measurement of CSI feedback overhead. Due to the partial CSI feedback constraint, conventional IA schemes can not be applied and hence, we develop a novel IA precoder / decorrelator design and establish new IA feasibility conditions. Via dynamic feedback profile design, the proposed IA scheme can also achieve a flexible tradeoff between the degree of freedom (DoF) requirements for data streams, the antenna resources and the CSI feedback cost. We show by analysis and simulations that the proposed scheme achieves substantial reductions of CSI feedback overhead under the same DoF requirement in MIMO interference networks.Comment: 30 pages, 7 figures, accepted for publication by IEEE transactions on signal processing in June, 201

    Generalized Interference Alignment --- Part I: Theoretical Framework

    Get PDF
    Interference alignment (IA) has attracted enormous research interest as it achieves optimal capacity scaling with respect to signal to noise ratio on interference networks. IA has also recently emerged as an effective tool in engineering interference for secrecy protection on wireless wiretap networks. However, despite the numerous works dedicated to IA, two of its fundamental issues, i.e., feasibility conditions and transceiver design, are not completely addressed in the literature. In this two part paper, a generalised interference alignment (GIA) technique is proposed to enhance the IA's capability in secrecy protection. A theoretical framework is established to analyze the two fundamental issues of GIA in Part I and then the performance of GIA in large-scale stochastic networks is characterized to illustrate how GIA benefits secrecy protection in Part II. The theoretical framework for GIA adopts methodologies from algebraic geometry, determines the necessary and sufficient feasibility conditions of GIA, and generates a set of algorithms that can solve the GIA problem. This framework sets up a foundation for the development and implementation of GIA.Comment: Minor Revision at IEEE Transactions on Signal Processin

    Identifying network communities with a high resolution

    Full text link
    Community structure is an important property of complex networks. An automatic discovery of such structure is a fundamental task in many disciplines, including sociology, biology, engineering, and computer science. Recently, several community discovery algorithms have been proposed based on the optimization of a quantity called modularity (Q). However, the problem of modularity optimization is NP-hard, and the existing approaches often suffer from prohibitively long running time or poor quality. Furthermore, it has been recently pointed out that algorithms based on optimizing Q will have a resolution limit, i.e., communities below a certain scale may not be detected. In this research, we first propose an efficient heuristic algorithm, Qcut, which combines spectral graph partitioning and local search to optimize Q. Using both synthetic and real networks, we show that Qcut can find higher modularities and is more scalable than the existing algorithms. Furthermore, using Qcut as an essential component, we propose a recursive algorithm, HQcut, to solve the resolution limit problem. We show that HQcut can successfully detect communities at a much finer scale and with a higher accuracy than the existing algorithms. Finally, we apply Qcut and HQcut to study a protein-protein interaction network, and show that the combination of the two algorithms can reveal interesting biological results that may be otherwise undetectable.Comment: 14 pages, 5 figures. 1 supplemental file at http://cic.cs.wustl.edu/qcut/supplemental.pd

    Hierarchical Radio Resource Optimization for Heterogeneous Networks with Enhanced Inter-cell Interference Coordination (eICIC)

    Full text link
    Interference is a major performance bottleneck in Heterogeneous Network (HetNet) due to its multi-tier topological structure. We propose almost blank resource block (ABRB) for interference control in HetNet. When an ABRB is scheduled in a macro BS, a resource block (RB) with blank payload is transmitted and this eliminates the interference from this macro BS to the pico BSs. We study a two timescale hierarchical radio resource management (RRM) scheme for HetNet with dynamic ABRB control. The long term controls, such as dynamic ABRB, are adaptive to the large scale fading at a RRM server for co-Tier and cross-Tier interference control. The short term control (user scheduling) is adaptive to the local channel state information within each BS to exploit the multi-user diversity. The two timescale optimization problem is challenging due to the exponentially large solution space. We exploit the sparsity in the interference graph of the HetNet topology and derive structural properties for the optimal ABRB control. Based on that, we propose a two timescale alternative optimization solution for the user scheduling and ABRB control. The solution has low complexity and is asymptotically optimal at high SNR. Simulations show that the proposed solution has significant gain over various baselines.Comment: 14 pages, 8 figure

    Global solutions to fractional programming problem with ratio of nonconvex functions

    No full text
    This paper presents a canonical dual approach for minimizing a sum of quadratic function and a ratio of nonconvex functions in Rⁿ. By introducing a parameter, the problem is first equivalently reformed as a nonconvex polynomial minimization with elliptic constraint. It is proved that under certain conditions, the canonical dual is a concave maximization problem in R² that exhibits no duality gap. Therefore, the global optimal solution of the primal problem can be obtained by solving the canonical dual problem.This paper was partially supported by a grant (AFOSR FA9550–10-1–0487) from the US Air Force Office of Scientific Research. Dr. Ning Ruan was supported by a funding from the Australian Government under the Collaborative Research Networks (CRN) program

    Tuning the thermal conductivity of graphene nanoribbons by edge passivation and isotope engineering: a molecular dynamics study

    Get PDF
    Using classical molecular dynamics simulation, we have studied the effect of edge-passivation by hydrogen (H-passivation) and isotope mixture (with random or supperlattice distributions) on the thermal conductivity of rectangular graphene nanoribbons (GNRs) (of several nanometers in size). We found that the thermal conductivity is considerably reduced by the edge H-passivation. We also find that the isotope mixing can reduce the thermal conductivities, with the supperlattice distribution giving rise to more reduction than the random distribution. These results can be useful in nanoscale engineering of thermal transport and heat management using GNRs.Comment: 4 pages, 4 figure
    corecore