1,275 research outputs found

    Non-equilibrium conductance of a three-terminal quantum dot in the Kondo regime: Perturbative Renormalization Group

    Full text link
    Motivated by recent experiments, we consider a single-electron transistor in the Kondo regime which is coupled to three leads in the presence of large bias voltages. Such a steady-state non-equilibrium system is to a large extent governed by a decoherence rate induced by the current through the dot. As the two-terminal conductance turns out to be rather insensitive to the decoherence rate, we study the conductance in a three-terminal device using perturbative renormalization group and calculate the characteristic splitting of the Kondo resonance. The interplay between potential biases and anisotropy in coupling to the three leads determines the decoherence rate and the conditions for strong coupling.Comment: 4 pages, 4 figure

    Giant mass and anomalous mobility of particles in fermionic systems

    Full text link
    We calculate the mobility of a heavy particle coupled to a Fermi sea within a non-perturbative approach valid at all temperatures. The interplay of particle recoil and of strong coupling effects, leading to the orthogonality catastrophe for an infinitely heavy particle, is carefully taken into account. We find two novel types of strong coupling effects: a new low energy scale T⋆T^{\star} and a giant mass renormalization in the case of either near-resonant scattering or a large transport cross section σ\sigma. The mobility is shown to obey two different power laws below and above T⋆T^{\star}. For σ≫λf2\sigma\gg\lambda_f^2, where λf\lambda_f is the Fermi wave length, an exponentially large effective mass suppresses the mobility.Comment: 4 pages, 4 figure

    Wilson chains are not thermal reservoirs

    Full text link
    Wilson chains, based on a logarithmic discretization of a continuous spectrum, are widely used to model an electronic (or bosonic) bath for Kondo spins and other quantum impurities within the numerical renormalization group method and other numerical approaches. In this short note we point out that Wilson chains can not serve as thermal reservoirs as their temperature changes by a number of order Delta E when a finite amount of energy Delta E is added. This proves that for a large class of non-equilibrium problems they cannot be used to predict the long-time behavior.Comment: 2 page

    Current induced rotational torques in the skyrmion lattice phase of chiral magnets

    Full text link
    In chiral magnets without inversion symmetry, the magnetic structure can form a lattice of magnetic whirl lines, a two-dimensional skyrmion lattice, stabilized by spin-orbit interactions in a small range of temperatures and magnetic fields. The twist of the magnetization within this phase gives rise to an efficient coupling of macroscopic magnetic domains to spin currents. We analyze the resulting spin-transfer effects, and, in particular, focus on the current induced rotation of the magnetic texture by an angle. Such a rotation can arise from macroscopic temperature gradients in the system as has recently been shown experimentally and theoretically. Here we investigate an alternative mechanism, where small distortions of the skyrmion lattice and the transfer of angular momentum to the underlying atomic lattice play the key role. We employ the Landau-Lifshitz-Gilbert equation and adapt the Thiele method to derive an effective equation of motion for the rotational degree of freedom. We discuss the dependence of the rotation angle on the orientation of the applied magnetic field and the distance to the phase transition.Comment: 11 pages, 6 figures; minor changes, published versio

    Heat transport of clean spin-ladders coupled to phonons: Umklapp scattering and drag

    Full text link
    We study the low-temperature heat transport in clean two-leg spin ladder compounds coupled to three-dimensional phonons. We argue that the very large heat conductivities observed in such systems can be traced back to the existence of approximate symmetries and corresponding weakly violated conservation laws of the effective (gapful) low--energy model, namely pseudo-momenta. Depending on the ratios of spin gaps and Debye energy and on the temperature, the magnetic contribution to the heat conductivity can be positive or negative, and exhibit an activated or anti-activated behavior. In most regimes, the magnetic heat conductivity is dominated by the spin-phonon drag: the excitations of the two subsystems have almost the same drift velocity, and this allows for an estimate of the ratio of the magnetic and phononic contributions to the heat conductivity.Comment: revised version, 8 pages, 3 figures, added appendi

    Quantum chemical modeling of tri-Mn-substituted W-based Keggin polyoxoanions

    Get PDF
    Using Density Functional Theory (DFT) calculations, we studied the electrochemistry of polyoxome- talates (POMs), specifically the redox properties of Mn in tri-Mn-substituted W-based Keggin ions. For direct comparison with recent cyclic voltammetry results [J. Friedl et al. Electrochim. Acta, 141 (2014) 357], we estimated the reversible half-wave potentials of proton- and cation-coupled electron transfer for Mn(IV/III) and Mn(III/II), respectively. The calculated reversible potentials agree well with experiment, reproducing the trend with pH for Mn(IV/III). For adequate DFT energies, it is crucial to apply a reliable description of the electrolyte environment of the POM, accounting also for their rather high charges, up to �7 e. To this end, we included the Li+ counterions, required for charge neutralization, directly in the quantum chemical models which were embedded in a polarizable continuum. We explored various arrangements of the Li+ ions around the POMs and their effect on both structural parameters and electrochemical properties of the POMs. Hybrid functionals (TPSSh, B3LYP, PBE0) overestimate the experimental reduction potentials: the larger the exact-exchange contribution, the larger the resulting reduction potential. The best agreement with experiment is achieved with the PBE approach, likely due to fortuitous error cancellation. The results of the present work indicate that a more sophisticated (atomistic) representation of the electrolyte environment will be beneficial for predicting redox potentials in better agreement with experiment

    Interplay of disorder and spin fluctuations in the resistivity near a quantum critical point

    Full text link
    The resistivity in metals near an antiferromagnetic quantum critical point (QCP) is strongly affected by small amounts of disorder. In a quasi-classical treatment, we show that an interplay of strongly anisotropic scattering due to spin fluctuations and isotropic impurity scattering leads to a large regime where the resistivity varies as T^alpha, with an anomalous exponent, alpha, 1 <= alpha <= 1.5, depending on the amount of disorder. I argue that this mechanism explains in some detail the anomalous temperature dependence of the resistivity observed in CePd_2Si_2, CeNi_2Ge_2 and CeIn_3 near the QCP.Comment: 4 pages, 4 eps figures, published version, only small change
    • …
    corecore