2 research outputs found

    Characterization of New Natural Cellulosic Fiber from Heteropogon Contortus Plant

    No full text
    Natural fibers are one of effective substitute for switching artificial fiber and concentrating to reinforce polymer matrixes due to their decomposable character. This study was implied to realize physico-chemical properties of bio fiber obtained from Heteropogon contortus (HC) plant. Heteropogon contortus fibers (HCFs) had cellulose (64.87 wt. %), hemicellulose (19.34 wt. %), lignin (13.56 wt. %), and low density (602 kg/m3). The chemical functional group of HCFs was established by Fourier transform infrared spectroscopy, thermal stability of the fiber up to 220°C discovered by thermogravimetric analysis. Further the assets of HCFs proved that it can act as an excellent reinforcement material as a bio composite. Finally, the tensile properties were carried out through single fiber tensile tests, such as tensile strength, tensile modulus and microfibrillar angle

    Characterization of natural cellulosic fiber from Epipremnum aureum stem

    No full text
    The natural fiber Epipremnum aureum was extracted from its plant. E. aureum fibers (EAFs) were investigated by chemical analysis, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction, thermogravimetric analysis, scanning electron microscopy, and single fiber tensile test. Chemical analysis, FTIR, and X-ray analysis evidenced that these fibers has 66.34% cellulose content with crystallinity index of 49.33%. The thermogravimetric analysis reveals that EAFs can thermally withstand temperatures until 328.9°C. The morphology of the EAFs was observed by scanning electron microscope. It was established that the fiber can be utilized as reinforcement in polymer composites
    corecore