10,553 research outputs found

    Constraints on dark energy and cosmic topology

    Full text link
    A non-trivial spatial topology of the Universe is a potentially observable attribute, which can be probed through the circles-in-the-sky for all locally homogeneous and isotropic universes with no assumptions on the cosmological parameters. We show how one can use a possible circles-in-the-sky detection of the spatial topology of globally homogeneous universes to set constraints on the dark energy equation of state parameters.Comment: 6 pages, 1 figure. To appear in Int. J. Mod. Phys. A (2009). From a talk presented at the Seventh Alexander Friedmann International Seminar on Gravitation and Cosmolog

    CMB Polarization Experiments

    Get PDF
    We discuss the analysis of polarization experiments with particular emphasis on those that measure the Stokes parameters on a ring on the sky. We discuss the ability of these experiments to separate the EE and BB contributions to the polarization signal. The experiment being developed at Wisconsin university is studied in detail, it will be sensitive to both Stokes parameters and will concentrate on large scale polarization, scanning a 47o47^o degree ring. We will also consider another example, an experiment that measures one of the Stokes parameters in a 1o1^o ring. We find that the small ring experiment will be able to detect cosmological polarization for some models consistent with the current temperature anisotropy data, for reasonable integration times. In most cosmological models large scale polarization is too small to be detected by the Wisconsin experiment, but because both QQ and UU are measured, separate constraints can be set on EE and BB polarization.Comment: 27 pages with 12 included figure

    Inhomogeneous reionization and the polarization of the cosmic microwave background

    Get PDF
    In a universe with inhomogeneous reionization, the ionized patches create a second order signal in the cosmic microwave background polarization anisotropy. This signal originates in the coupling of the free electron fluctuation to the quadruple moment of the temperature anisotropy. We examine the contribution from a simple inhomogeneous reionization model and find that the signal from such a process is below the detectable limits of the Planck Surveyor mission. However t he signal is above the fundamental uncertainty limit from cosmic variance, so th at a future detection with a high accuracy experiment on sub-arcminute scales is possible.Comment: 10 pages, 2 eps figures, final version accepted for publication in ApJ Letter

    Secondary CMB anisotropies in a universe reionized in patches

    Full text link
    In a universe reionized in patches, the Doppler effect from Thomson scattering off free electrons generates secondary cosmic microwave background (CMB) anisotropies. For a simple model with small patches and late reionization, we analytically calculate the anisotropy power spectrum. Patchy reionization can, in principle, be the main source of anisotropies on arcminute scales. On larger angular scales, its contribution to the CMB power spectrum is a small fraction of the primary signal and is only barely detectable in the power spectrum with even an ideal, i.e. cosmic variance limited, experiment and an extreme model of reionization. Consequently patchy reionization is unlikely to affect cosmological parameter estimation from the acoustic peaks in the CMB. Its detection on small angles would help determine the ionization history of the universe, in particular the typical size of the ionized region and the duration of the reionization process.Comment: 7 pages, 2 figures, submitted to Ap

    Age problem in holographic dark energy

    Full text link
    We study the age problem of the universe with the holographic DE model introduced in [21], and test the model with some known old high redshift objects (OHRO). The parameters of the model have been constrained using the SNIa, CMB and BAO data set. We found that the age of the old quasar APM 08 279+5255 at z = 3.91 can be described by the model.Comment: 13 page

    Testing Gaussian random hypothesis with the cosmic microwave background temperature anisotropies in the three-year WMAP data

    Full text link
    We test the hypothesis that the temperature of the cosmic microwave background is consistent with a Gaussian random field defined on the celestial sphere, using de-biased internal linear combination (DILC) map produced from the 3-year WMAP data. We test the phases for spherical harmonic modes with l <= 10 (which should be the cleanest) for their uniformity, randomness, and correlation with those of the foreground templates. The phases themselves are consistent with a uniform distribution, but not for l <= 5, and the differences between phases are not consistent with uniformity. For l=3 and l=6, the phases of the CMB maps cross-correlate with the foregrounds, suggestion the presence of residual contamination in the DLC map even on these large scales. We also use a one-dimensional Fourier representation to assemble a_lm into the \Delta T_l(\phi) for each l mode, and test the positions of the resulting maxima and minima for consistency with uniformity randomness on the unit circle. The results show significant departures at the 0.5% level, with the one-dimensional peaks being concentrated around \phi=180 degs. This strongly significant alignment with the Galactic meridian, together with the cross-correlation of DILC phases with the foreground maps, strongly suggests that even the lowest spherical harmonic modes in the map are significantly contaminated with foreground radiation.Comment: submitted to ApJL, one paragraph is added in Section 3 and some more in the Referenc
    • 

    corecore