515 research outputs found

    Coresponding Author: Nikos Polyzos, Associate Professor of Health Service Management, Former Secretary General of Ministry of Health

    Get PDF
    Abstract Purpose: The purpose of this study was to access the performance of 117 Greek National Health System (NHS) hospitals for the year 2011, to compare the findings with the results from similar studies of the previous years (2009 and 2010) and to investigate the changes during the last three years of financial crisis. Method: An input-oriented Data Envelopment Analysis was used to measure three indicators, technical, pure technical and scale efficiency indicators. Data was collected from the reports of the web-based facility (ESY.net) which was developed by the General Secretary of Ministry of Health and Social Solidarity. The input variables were the number of physicians, the number of nurses and other personnel, the number of beds and expenditures of every hospital. The output variables were the number of inpatient and outpatient visits. Hospitals were categorized into three size groups. Results: Between the years 2009-2011, all hospitals, especially middle-sized hospitals showed performance improvement on all three indicators. Specific problems were noticed mainly in large-sized hospitals. The technical efficiency of Large-sized hospitals was estimated at 80%, of Middle-sized hospitals at 82% and of Small hospitals-Health Care Centres at 89%. Pure technical and scale efficiency varied between satisfactory levels throughout the study period. Conclusion: Comparing the 2009-2011 data, an improvement of technical efficiency in NHS hospitals has been achieved up to 100%, mainly in the middle-sized hospitals. Specifically, an increase of best practice hospitals has been noted, especially in the middle and small-sized hospitals, when certain units were added the technical efficiency reached over 80%. The consequences of the spending-cuts and the constant reforms appear to have a positive effect on hospitals' efficiency. Hippokratia 2012, 16, 4: 350-35

    FastSVD-ML-ROM\textit{FastSVD-ML-ROM}: A Reduced-Order Modeling Framework based on Machine Learning for Real-Time Applications

    Full text link
    Digital twins have emerged as a key technology for optimizing the performance of engineering products and systems. High-fidelity numerical simulations constitute the backbone of engineering design, providing an accurate insight into the performance of complex systems. However, large-scale, dynamic, non-linear models require significant computational resources and are prohibitive for real-time digital twin applications. To this end, reduced order models (ROMs) are employed, to approximate the high-fidelity solutions while accurately capturing the dominant aspects of the physical behavior. The present work proposes a new machine learning (ML) platform for the development of ROMs, to handle large-scale numerical problems dealing with transient nonlinear partial differential equations. Our framework, mentioned as FastSVD-ML-ROM\textit{FastSVD-ML-ROM}, utilizes (i)\textit{(i)} a singular value decomposition (SVD) update methodology, to compute a linear subspace of the multi-fidelity solutions during the simulation process, (ii)\textit{(ii)} convolutional autoencoders for nonlinear dimensionality reduction, (iii)\textit{(iii)} feed-forward neural networks to map the input parameters to the latent spaces, and (iv)\textit{(iv)} long short-term memory networks to predict and forecast the dynamics of parametric solutions. The efficiency of the FastSVD-ML-ROM\textit{FastSVD-ML-ROM} framework is demonstrated for a 2D linear convection-diffusion equation, the problem of fluid around a cylinder, and the 3D blood flow inside an arterial segment. The accuracy of the reconstructed results demonstrates the robustness and assesses the efficiency of the proposed approach.Comment: 35 pages, 22 figure

    Multiple Autoimmune Propensity and B-Non-Hodgkin Lymphoma: Cause or Effect?

    Get PDF
    We report a case of multiple autoimmunity consisting of the presence of autoimmune haemolytic anaemia (AIHA), antimitochondrial antibodies (AMAs), and antiphospholipid antibodies (APLAbs) as the presenting manifestations of an extrahepatic B-non-Hodgkin lymphoma (B-NHL) in a 63-year-old woman. The patient presented with fatigue attributed to severe AIHA. Due to increased serum IgM and γ-GT levels, an investigation for AMA was performed, which proved positive with anti-M2 specificity. A prolongation of activated partial thromboplastin time (aPTT) led to the determination of APLAbs (lupus anticoagulant and other APLAbs) which were also positive. Bone marrow biopsy in combination with immmunohistochemical studies established the diagnosis of lymphoplasmacytic B-NHL. Ten months later, B-NHL was in remission while AMA and APLAbs were still positive. In conclusion, we documented the coexistence of multiple autoimmune reactions together with B-NHL highlighting the possible common pathogenetic pathways of the two entities

    Effect of ultrasound on bone fracture healing:A computational bioregulatory model

    Get PDF
    peer reviewedBone healing is a complex biological procedure in which several cellular actions, directed by biochemical and mechanical signals, take place. Experimental studies have shown that ultrasound accelerates bone ossification and has a multiple influence on angiogenesis. In this study a mathematical model predicting bone healing under the presence of ultrasound is demonstrated. The primary objective is to account for the ultrasound effect on angiogenesis and more specifically on the transport of the Vascular Endothelial Growth Factor (VEGF). Partial differential equations describing the spatiotemporal evolution of cells, growth factors, tissues and ultrasound acoustic pressure and velocity equations determining the development of the blood vessel network constitute the present model. The effect of the ultrasound characteristics on angiogenesis and bone healing is investigated by applying different boundary conditions of acoustic pressure at the periosteal region of the bone model, which correspond to different intensity values. The results made clear that ultrasound enhances angiogenesis mechanisms during bone healing. The proposed model could be regarded as a step towards the monitoring of the effect of ultrasound on bone regeneration. © 2018Action “Supporting Postdoctoral Researchers” of the Operational Program “Education and Lifelong Learning” (Action’s Beneficiary: General Secretariat for Research and Technology); Greek State (PE8-3347

    Should We Continue to Measure Endometrial Thickness in Modern-Day Medicine? The Effect on Live Birth Rates and Birth Weight

    Get PDF
    The evaluation of endometrial thickness (EMT) is still part of standard cycle monitoring during IVF, despite the lack of robust evidence of any value of this measurement to predict little revalidation in contemporary medical practice; other tools, however, such as endocrine profile monitoring, have become increasingly popular. The aim of this study was to reassess whether EMT affects the outcome of a fresh embryo transfer in modern-day medicine, using a retrospective, single-centre cohort of 3350 IVF cycles (2827 women) carried out between 2010 and 2014. In the multivariate regression analysis, EMT was non-linearly associated with live birth, with live birth rates being the lowest with an EMT less than 7.0 mm (21.6%; P < 0.001) and then between 7.0 mm and 9.0 mm (30.2%; P = 0.008). An EMT less than 7.0 mm was also associated with a decrease in neonatal birthweight z-scores (-0.40; 95% CI -0.69 to -0.12). In conclusion, these results reaffirm the use of EMT as a potential prognostic tool for live birth rates and neonatal birthweight in contemporary IVF, namely when considered together with other ovarian stimulation monitoring methods, such as the late-follicular endocrine profile.info:eu-repo/semantics/publishedVersio

    Suspended monolayer graphene under true uniaxial deformation

    Get PDF
    2D crystals, such as graphene, exhibit the higher strength and stiffness of any other known man-made or natural material. So far, this assertion has been primarily based on modelling predictions and on bending experiments in combination with pertinent modelling. True uniaxial loading of suspended graphene is not easy to accomplish; however such an experiment is of paramount importance in order to assess the intrinsic properties of graphene without the influence of an underlying substrate. In this work we report on uniaxial tension of graphene up to moderate strains of 0.8% ca.. This has been made possible by sandwiching the graphene flake between two polymethylmethacrylate (PMMA) layers and by suspending its central part by the removal of a section of PMMA with e-beam lithography. True uniaxial deformation is confirmed by the measured large phonon shifts with strain by Raman spectroscopy and the indication of lateral buckling (similar to what is observed for thin macroscopic membranes under tension). Finally, we also report on how the stress is transferred to the suspended specimen through the adhesive grips and determine the value of interfacial shear stress that is required for efficient axial loading in such a system

    Effect of ultrasound on bone fracture healing:A computational mechanobioregulatory model

    Get PDF
    Bone healing process is a complicated phenomenon regulated by biochemical and mechanical signals. Experimental studies have shown that ultrasound (US) accelerates bone ossification and has a multiple influence on cell differentiation and angiogenesis. In a recent work of the authors, a bioregulatory model for providing bone-healing predictions was addressed, taking into account for the first time the salutary effect of US on the involved angiogenesis. In the present work, a mechanobioregulatory model of bone solidification under the US presence incorporating also the mechanical environment on the regeneration process, which is known to affect cellular processes, is presented. An iterative procedure is adopted, where the finite element method is employed to compute the mechanical stimuli at the linear elastic phases of the poroelastic callus region and a coupled system of partial differential equations to simulate the enhancement by the US cell angiogenesis process and thus the oxygen concentration in the fractured area. Numerical simulations with and without the presence of US that illustrate the influence of progenitor cells' origin in the healing pattern and the healing rate and simultaneously demonstrate the salutary effect of US on bone repair are presented and discussed
    corecore