144 research outputs found
Attacks on quantum key distribution protocols that employ non-ITS authentication
We demonstrate how adversaries with unbounded computing resources can break
Quantum Key Distribution (QKD) protocols which employ a particular message
authentication code suggested previously. This authentication code, featuring
low key consumption, is not Information-Theoretically Secure (ITS) since for
each message the eavesdropper has intercepted she is able to send a different
message from a set of messages that she can calculate by finding collisions of
a cryptographic hash function. However, when this authentication code was
introduced it was shown to prevent straightforward Man-In-The-Middle (MITM)
attacks against QKD protocols.
In this paper, we prove that the set of messages that collide with any given
message under this authentication code contains with high probability a message
that has small Hamming distance to any other given message. Based on this fact
we present extended MITM attacks against different versions of BB84 QKD
protocols using the addressed authentication code; for three protocols we
describe every single action taken by the adversary. For all protocols the
adversary can obtain complete knowledge of the key, and for most protocols her
success probability in doing so approaches unity.
Since the attacks work against all authentication methods which allow to
calculate colliding messages, the underlying building blocks of the presented
attacks expose the potential pitfalls arising as a consequence of non-ITS
authentication in QKD-postprocessing. We propose countermeasures, increasing
the eavesdroppers demand for computational power, and also prove necessary and
sufficient conditions for upgrading the discussed authentication code to the
ITS level.Comment: 34 page
New intensity and visibility aspects of a double loop neutron interferometer
Various phase shifters and absorbers can be put into the arms of a double
loop neutron interferometer. The mean intensity levels of the forward and
diffracted beams behind an empty four plate interferometer of this type have
been calculated. It is shown that the intensities in the forward and diffracted
direction can be made equal using certain absorbers. In this case the
interferometer can be regarded as a 50/50 beam splitter. Furthermore the
visibilities of single and double loop interferometers are compared to each
other by varying the transmission in the first loop using different absorbers.
It can be shown that the visibility becomes exactly 1 using a phase shifter in
the second loop. In this case the phase shifter in the second loop must be
strongly correlated to the transmission coefficient of the absorber in the
first loop. Using such a device homodyne-like measurements of very weak signals
should become possible.Comment: 12 pages, 9 figures, accepted for publication in the Journal of
Optics B - Quantum and Semiclassical Optic
Improvement of continuous-variable quantum key distribution systems by using optical preamplifiers
Continuous-variable quantum key distribution protocols, based on Gaussian
modulation of the quadratures of coherent states, have been implemented in
recent experiments. A present limitation of such systems is the finite
efficiency of the detectors, which can in principle be compensated for by the
use of classical optical preamplifiers. Here we study this possibility in
detail, by deriving the modified secret key generation rates when an optical
parametric amplifier is placed at the output of the quantum channel. After
presenting a general set of security proofs, we show that the use of
preamplifiers does compensate for all the imperfections of the detectors when
the amplifier is optimal in terms of gain and noise. Imperfect amplifiers can
also enhance the system performance, under conditions which are generally
satisfied in practice.Comment: 11 pages, 7 figures, submitted to J. Phys. B (special issue on Few
Atoms Optics
Using quantum key distribution for cryptographic purposes: a survey
The appealing feature of quantum key distribution (QKD), from a cryptographic
viewpoint, is the ability to prove the information-theoretic security (ITS) of
the established keys. As a key establishment primitive, QKD however does not
provide a standalone security service in its own: the secret keys established
by QKD are in general then used by a subsequent cryptographic applications for
which the requirements, the context of use and the security properties can
vary. It is therefore important, in the perspective of integrating QKD in
security infrastructures, to analyze how QKD can be combined with other
cryptographic primitives. The purpose of this survey article, which is mostly
centered on European research results, is to contribute to such an analysis. We
first review and compare the properties of the existing key establishment
techniques, QKD being one of them. We then study more specifically two generic
scenarios related to the practical use of QKD in cryptographic infrastructures:
1) using QKD as a key renewal technique for a symmetric cipher over a
point-to-point link; 2) using QKD in a network containing many users with the
objective of offering any-to-any key establishment service. We discuss the
constraints as well as the potential interest of using QKD in these contexts.
We finally give an overview of challenges relative to the development of QKD
technology that also constitute potential avenues for cryptographic research.Comment: Revised version of the SECOQC White Paper. Published in the special
issue on QKD of TCS, Theoretical Computer Science (2014), pp. 62-8
High rate, long-distance quantum key distribution over 250km of ultra low loss fibres
We present a fully automated quantum key distribution prototype running at
625 MHz clock rate. Taking advantage of ultra low loss fibres and low-noise
superconducting detectors, we can distribute 6,000 secret bits per second over
100 km and 15 bits per second over 250km
Quantum Forbidden-Interval Theorems for Stochastic Resonance
We extend the classical forbidden-interval theorems for a
stochastic-resonance noise benefit in a nonlinear system to a quantum-optical
communication model and a continuous-variable quantum key distribution model.
Each quantum forbidden-interval theorem gives a necessary and sufficient
condition that determines whether stochastic resonance occurs in quantum
communication of classical messages. The quantum theorems apply to any quantum
noise source that has finite variance or that comes from the family of
infinite-variance alpha-stable probability densities. Simulations show the
noise benefits for the basic quantum communication model and the
continuous-variable quantum key distribution model.Comment: 13 pages, 2 figure
Triplet-like correlation symmetry of continuous variable entangled states
We report on a continuous variable analogue of the triplet two-qubit Bell
states. We theoretically and experimentally demonstrate a remarkable similarity
of two-mode continuous variable entangled states with triplet Bell states with
respect to their correlation patterns. Borrowing from the two qubit language,
we call these correlations triplet-like.Comment: 7 pages, 5 figures. Comments are welcom
Topological optimization of quantum key distribution networks
A Quantum Key Distribution (QKD) network is an infrastructure that allows the
realization of the key distribution cryptographic primitive over long distances
and at high rates with information-theoretic security. In this work, we
consider QKD networks based on trusted repeaters from a topology viewpoint, and
present a set of analytical models that can be used to optimize the spatial
distribution of QKD devices and nodes in specific network configurations in
order to guarantee a certain level of service to network users, at a minimum
cost. We give details on new methods and original results regarding such cost
minimization arguments applied to QKD networks. These results are likely to
become of high importance when the deployment of QKD networks will be addressed
by future quantum telecommunication operators. They will therefore have a
strong impact on the design and requirements of the next generation of QKD
devices.Comment: 25 pages, 4 figure
Field test of a continuous-variable quantum key distribution prototype
We have designed and realized a prototype that implements a
continuous-variable quantum key distribution protocol based on coherent states
and reverse reconciliation. The system uses time and polarization multiplexing
for optimal transmission and detection of the signal and phase reference, and
employs sophisticated error-correction codes for reconciliation. The security
of the system is guaranteed against general coherent eavesdropping attacks. The
performance of the prototype was tested over preinstalled optical fibres as
part of a quantum cryptography network combining different quantum key
distribution technologies. The stable and automatic operation of the prototype
over 57 hours yielded an average secret key distribution rate of 8 kbit/s over
a 3 dB loss optical fibre, including the key extraction process and all quantum
and classical communication. This system is therefore ideal for securing
communications in metropolitan size networks with high speed requirements.Comment: 15 pages, 6 figures, submitted to New Journal of Physics (Special
issue on Quantum Cryptography
Feasibility of free space quantum key distribution with coherent polarization states
We demonstrate for the first time the feasibility of free space quantum key
distribution with continuous variables under real atmospheric conditions. More
specifically, we transmit coherent polarization states over a 100m free space
channel on the roof of our institute's building. In our scheme, signal and
local oscillator are combined in a single spatial mode which auto-compensates
atmospheric fluctuations and results in an excellent interference. Furthermore,
the local oscillator acts as spatial and spectral filter thus allowing
unrestrained daylight operation.Comment: 12 pages, 8 figures, extensions in sections 2, 3.1, 3.2 and 4. This
is an author-created, un-copyedited version of an article accepted for
publication in New Journal of Physics (Special Issue on Quantum Cryptography:
Theory and Practice). IOP Publishing Ltd is not responsible for any errors or
omissions in this version of the manuscript or any version derived from i
- …