42,401 research outputs found
Strength Modeling Report
Strength modeling is a complex and multi-dimensional issue. There are numerous parameters to the problem of characterizing human strength, most notably: (1) position and orientation of body joints; (2) isometric versus dynamic strength; (3) effector force versus joint torque; (4) instantaneous versus steady force; (5) active force versus reactive force; (6) presence or absence of gravity; (7) body somatotype and composition; (8) body (segment) masses; (9) muscle group envolvement; (10) muscle size; (11) fatigue; and (12) practice (training) or familiarity. In surveying the available literature on strength measurement and modeling an attempt was made to examine as many of these parameters as possible. The conclusions reached at this point toward the feasibility of implementing computationally reasonable human strength models. The assessment of accuracy of any model against a specific individual, however, will probably not be possible on any realistic scale. Taken statistically, strength modeling may be an effective tool for general questions of task feasibility and strength requirements
A Probabilistic Linear Genetic Programming with Stochastic Context-Free Grammar for solving Symbolic Regression problems
Traditional Linear Genetic Programming (LGP) algorithms are based only on the
selection mechanism to guide the search. Genetic operators combine or mutate
random portions of the individuals, without knowing if the result will lead to
a fitter individual. Probabilistic Model Building Genetic Programming (PMB-GP)
methods were proposed to overcome this issue through a probability model that
captures the structure of the fit individuals and use it to sample new
individuals. This work proposes the use of LGP with a Stochastic Context-Free
Grammar (SCFG), that has a probability distribution that is updated according
to selected individuals. We proposed a method for adapting the grammar into the
linear representation of LGP. Tests performed with the proposed probabilistic
method, and with two hybrid approaches, on several symbolic regression
benchmark problems show that the results are statistically better than the
obtained by the traditional LGP.Comment: Genetic and Evolutionary Computation Conference (GECCO) 2017, Berlin,
German
Pion Interferometry for Hydrodynamical Expanding Source with a Finite Baryon Density
We calculate the two-pion correlation function for an expanding hadron source
with a finite baryon density. The space-time evolution of the source is
described by relativistic hydrodynamics and the Hanbury-Brown-Twiss (HBT)
radius is extracted after effects of collective expansion and multiple
scattering on the HBT interferometry have been taken into account, using
quantum probability amplitudes in a path-integral formalism. We find that this
radius is substantially smaller than the HBT radius extracted from the
freeze-out configuration.Comment: 4 pages, 2 figure
Ion-acoustic solitary waves and shocks in a collisional dusty negative ion plasma
We study the effects of ion-dust collisions and ion kinematic viscosities on
the linear ion-acoustic instability as well as the nonlinear propagation of
small amplitude solitary waves and shocks (SWS) in a negative ion plasma with
immobile charged dusts. {The existence of two linear ion modes, namely the
`fast' and `slow' waves is shown, and their properties are analyzed in the
collisional negative ion plasma.} {Using the standard reductive perturbation
technique, we derive a modified Korteweg-de Vries-Burger (KdVB) equation which
describes the evolution of small amplitude SWS.} {The profiles of the latter
are numerically examined with parameters relevant for laboratory and space
plasmas where charged dusts may be positively or negatively charged.} It is
found that negative ion plasmas containing positively charged dusts support the
propagation of SWS with negative potential. However, the perturbations with
both positive and negative potentials may exist when dusts are negatively
charged. The results may be useful for the excitation of SWS in laboratory
negative ion plasmas as well as for observation in space plasmas where charged
dusts may be positively or negatively charged.Comment: 13 pages, 9 figures; To appear in Physical Review
Void Formation Study of Flip Chip in Package Using No-Flow Underfill
©2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or distribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.DOI: 10.1109/TEPM.2008.2002951The advanced flip chip in package (FCIP) process using no-flow underfill material for high I/O density and fine-pitch interconnect applications presents challenges for an assembly process that must achieve high electrical interconnect yield and high reliability performance. With respect to high reliability, the voids formed in the underfill between solder bumps or inside the solder bumps during the no-flow underfill assembly process of FCIP devices have been typically considered one of the critical concerns affecting assembly yield and reliability performance. In this paper, the plausible causes of underfill void formation in FCIP using no-flow underfill were investigated through systematic experimentation with different types of test vehicles. For instance, the effects of process conditions, material properties, and chemical reaction between the solder bumps and no-flow underfill materials on the void formation behaviors were investigated in advanced FCIP assemblies. In this investigation, the chemical reaction between solder and underfill during the solder wetting and underfill cure process has been found to be one of the most significant factors for void formation in high I/O and fine-pitch FCIP assembly using no-flow underfill materials
How analysts think: think-steps as a tool for structuring sensemaking in criminal intelligence analysis
Sensemaking has been described as a process involving information structuring. However, there are few detailed accounts of how this manifests in practice, particularly in relation to the creation and use of external representations such as data visualisations, and how such structuring aids sensemaking. To explore these questions in depth, we present an interview study of police crime analysts from which a model of their analysis process is developed. We describe the model focusing on the notion of 'think-steps', which for the analysts acted as a primary structuring concept. We describe how 'think-steps' propagate throughout the analysis process captured in the model. For the analysts, 'think-steps' are extensible templates that decompose a case into elements, provide a way of storing and visually structuring data, support generation of requests for information, focus research, simulate a case, and shape reporting. We reflect on the implications that our findings might have for design, including the possibility of a repertoire of evolving, sharable and reusable templates for sensemaking within a community of practice
The molecular environment of massive star forming cores associated with Class II methanol maser emission
Methanol maser emission has proven to be an excellent signpost of regions
undergoing massive star formation (MSF). To investigate their role as an
evolutionary tracer, we have recently completed a large observing program with
the ATCA to derive the dynamical and physical properties of molecular/ionised
gas towards a sample of MSF regions traced by 6.7 GHz methanol maser emission.
We find that the molecular gas in many of these regions breaks up into multiple
sub-clumps which we separate into groups based on their association
with/without methanol maser and cm continuum emission. The temperature and
dynamic state of the molecular gas is markedly different between the groups.
Based on these differences, we attempt to assess the evolutionary state of the
cores in the groups and thus investigate the role of class II methanol masers
as a tracer of MSF.Comment: 5 pages, 1 figure, IAU Symposium 242 Conference Proceeding
Asymptotic corrections to the eigenvalue density of the GUE and LUE
We obtain correction terms to the large N asymptotic expansions of the
eigenvalue density for the Gaussian unitary and Laguerre unitary ensembles of
random N by N matrices, both in the bulk of the spectrum and near the spectral
edge. This is achieved by using the well known orthogonal polynomial expression
for the kernel to construct a double contour integral representation for the
density, to which we apply the saddle point method. The main correction to the
bulk density is oscillatory in N and depends on the distribution function of
the limiting density, while the corrections to the Airy kernel at the soft edge
are again expressed in terms of the Airy function and its first derivative. We
demonstrate numerically that these expansions are very accurate. A matching is
exhibited between the asymptotic expansion of the bulk density, expanded about
the edge, and the asymptotic expansion of the edge density, expanded into the
bulk.Comment: 14 pages, 4 figure
- …