3,956 research outputs found
Enhancement of the electric dipole moment of the electron in PbO
The a(1) state of PbO can be used to measure the electric dipole moment of
the electron d_e. We discuss a semiempirical model for this state, which yields
an estimate of the effective electric field on the valence electrons in PbO.
Our final result is an upper limit on the measurable energy shift, which is
significantly larger than was anticipated earlier: .Comment: 4 pages, revtex4, no figures, submitted to PR
Effect of Plasma Irradiation on films
The effect of plasma irradiation is studied systematically on a 4H polytype
(002) oriented stoichiometric film having compressive residual
stress. Plasma irradiation was found to change the orientation to (110) of the
film at certain moderate irradiation distances. A linear decrease in grain size
and residual stress was observed with decreasing irradiation distance (or
increasing ion energy) consistent with both structural and morphological
observations. The direct optical energy gap was found to increase
linearly at the rate with the compressive stress. The
combined data of present compressive stress and from earlier reported tensile
stress show a consistent trend of change with stress. The
iodine-iodine distance in the unit cell could be responsible for the observed
change in with stress.Comment: 13 pages and 10 fi
A Necessary Condition for existence of Lie Symmetries in Quasihomogeneous Systems of Ordinary Differential Equations
Lie symmetries for ordinary differential equations are studied. In systems of
ordinary differential equations, there do not always exist non-trivial Lie
symmetries around equilibrium points. We present a necessary condition for
existence of Lie symmetries analytic in the neighbourhood of an equilibrium
point. In addition, this result can be applied to a necessary condition for
existence of a Lie symmetry in quasihomogeneous systems of ordinary
differential equations. With the help of our main theorem, it is proved that
several systems do not possess any analytic Lie symmetries.Comment: 15 pages, no figures, AMSLaTe
Using Molecules to Measure Nuclear Spin-Dependent Parity Violation
Nuclear spin-dependent parity violation arises from weak interactions between
electrons and nucleons, and from nuclear anapole moments. We outline a method
to measure such effects, using a Stark-interference technique to determine the
mixing between opposite-parity rotational/hyperfine levels of ground-state
molecules. The technique is applicable to nuclei over a wide range of atomic
number, in diatomic species that are theoretically tractable for
interpretation. This should provide data on anapole moments of many nuclei, and
on previously unmeasured neutral weak couplings
Enhancement of the electric dipole moment of the electron in BaF molecule
We report results of ab initio calculation of the spin-rotational Hamiltonian
parameters including P- and P,T-odd terms for the BaF molecule. The ground
state wave function of BaF molecule is found with the help of the Relativistic
Effective Core Potential method followed by the restoration of molecular
four-component spinors in the core region of barium in the framework of a
non-variational procedure. Core polarization effects are included with the help
of the atomic Many Body Perturbation Theory for Barium atom. For the hyperfine
constants the accuracy of this method is about 5-10%.Comment: 8 pages, REVTEX, report at II International Symposium on Symmetries
in Subatomic Physics, Seattle 199
One approach to the analytical solution of a two-dimensional nonstationary problem of heat conduction in regions with moving boundaries on the model of a half-space
With the use of the solution of the Dirichlet nonstationary problem with discontinuous unmixed
boundary conditions on the surface of an isotropic half-space a two-dimensional model of the problem
with a moving phase boundary is considered. The problem models, for example, the processes of
freezing of moist ground or the processes of formation of ice in stagnant water if a temperature
lower than the freezing temperature is prescribed on the boundary surface in a circular region of
finite radius. The classical one-dimensional result follows as a particular case from solution of this
problem for an infinite radius of the circle
A method of paired integral equations in the region of laplace transforms for solving nonstationary heat conduction problems with mixed discontinuous boundary conditions
On the basis of the method developed, the solutions of four problems of mathematical physics are obtained
for an infinite plate (a plane layer of thickness z = h) with assignment of mixed discontinuous boundary
conditions (BC) on one of the surfaces z = 0 of the plate and unmixed BC on the other surface z = 17
The WITCH experiment: Acquiring the first recoil ion spectrum
The standard model of the electroweak interaction describes beta-decay in the
well-known V-A form. Nevertheless, the most general Hamiltonian of a beta-decay
includes also other possible interaction types, e.g. scalar (S) and tensor (T)
contributions, which are not fully ruled out yet experimentally. The WITCH
experiment aims to study a possible admixture of these exotic interaction types
in nuclear beta-decay by a precise measurement of the shape of the recoil ion
energy spectrum. The experimental set-up couples a double Penning trap system
and a retardation spectrometer. The set-up is installed in ISOLDE/CERN and was
recently shown to be fully operational. The current status of the experiment is
presented together with the data acquired during the 2006 campaign, showing the
first recoil ion energy spectrum obtained. The data taking procedure and
corresponding data acquisition system are described in more detail. Several
further technical improvements are briefly reviewed.Comment: 11 pages, 6 figures, conference proceedings EMIS 2007
(http://emis2007.ganil.fr), published also in NIM B:
doi:10.1016/j.nimb.2008.05.15
- …