394 research outputs found

    Parabolic resonances and instabilities in near-integrable two degrees of freedom Hamiltonian flows

    Full text link
    When an integrable two-degrees-of-freedom Hamiltonian system possessing a circle of parabolic fixed points is perturbed, a parabolic resonance occurs. It is proved that its occurrence is generic for one parameter families (co-dimension one phenomenon) of near-integrable, t.d.o. systems. Numerical experiments indicate that the motion near a parabolic resonance exhibits new type of chaotic behavior which includes instabilities in some directions and long trapping times in others. Moreover, in a degenerate case, near a {\it flat parabolic resonance}, large scale instabilities appear. A model arising from an atmospherical study is shown to exhibit flat parabolic resonance. This supplies a simple mechanism for the transport of particles with {\it small} (i.e. atmospherically relevant) initial velocities from the vicinity of the equator to high latitudes. A modification of the model which allows the development of atmospherical jets unfolds the degeneracy, yet traces of the flat instabilities are clearly observed

    Symmetry breaking perturbations and strange attractors

    Full text link
    The asymmetrically forced, damped Duffing oscillator is introduced as a prototype model for analyzing the homoclinic tangle of symmetric dissipative systems with \textit{symmetry breaking} disturbances. Even a slight fixed asymmetry in the perturbation may cause a substantial change in the asymptotic behavior of the system, e.g. transitions from two sided to one sided strange attractors as the other parameters are varied. Moreover, slight asymmetries may cause substantial asymmetries in the relative size of the basins of attraction of the unforced nearly symmetric attracting regions. These changes seems to be associated with homoclinic bifurcations. Numerical evidence indicates that \textit{strange attractors} appear near curves corresponding to specific secondary homoclinic bifurcations. These curves are found using analytical perturbational tools

    Multicritical crossovers near the dilute Bose gas quantum critical point

    Full text link
    Many zero temperature transitions, involving the deviation in the value of a U(1)U(1) conserved charge from a quantized value, are described by the dilute Bose gas quantum critical point. On such transitions, we study the consequences of perturbations which break the symmetry down to ZNZ_N in dd spatial dimensions. For the case d=1d=1, N=2N=2, we obtain exact, finite temperature, multicritical crossover functions by a mapping to an integrable lattice model.Comment: 10 pages, REVTEX 3.0, 2 EPS figure

    Approximating multi-dimensional Hamiltonian flows by billiards

    Full text link
    Consider a family of smooth potentials VϵV_{\epsilon}, which, in the limit ϵ→0\epsilon\to0, become a singular hard-wall potential of a multi-dimensional billiard. We define auxiliary billiard domains that asymptote, as ϵ→0\epsilon\to0 to the original billiard, and provide asymptotic expansion of the smooth Hamiltonian solution in terms of these billiard approximations. The asymptotic expansion includes error estimates in the CrC^{r} norm and an iteration scheme for improving this approximation. Applying this theory to smooth potentials which limit to the multi-dimensional close to ellipsoidal billiards, we predict when the separatrix splitting persists for various types of potentials

    Influenza B virus: Need for heightened surveillance and epidemiologic case studies

    Get PDF
    Recent report of increased influenza B virus infection, particularly theclinical profiles and treatment challenges imposed like that of influenza A,underscores the importance of continuing influenza B virus surveillance.This is, especially in resource limited country, early detection of influenzavirus, its clinical presentation and complications would be vital in minimizingthe public heath burden imposed by this virus.Keywords: chronic obstructive pulmonary disease, influenza B, severe acutepulmonary infection

    Dynamics and Transport in Random Antiferromagnetic Spin Chains

    Get PDF
    We present the first results on the low-frequency dynamical and transport properties of random antiferromagnetic spin chains at low temperature (TT). We obtain the momentum and frequency dependent dynamic structure factor in the Random Singlet (RS) phases of both spin-1/2 and spin-1 chains, as well as in the Random Dimer phase of spin-1/2 chains. We also show that the RS phases are unusual `spin-metals' with divergent low-frequency conductivity at T=0, and follow the spin conductivity through `metal-insulator' transitions tuned by the strength of dimerization or Ising anisotropy in the spin-1/2 case, and by the strength of disorder in the spin-1 case.Comment: 4 pages (two-column format). Presentation substantially revised to accomodate new result
    • …
    corecore