30 research outputs found

    Oviduct-specific expression of tissue plasminogen activator in laying hens

    Get PDF
    Egg-laying hens are important candidate bioreactors for pharmaceutical protein production because of the amenability of their eggs for protein expression. In this study, we constructed an oviduct-specific vector containing tissue plasminogen activator (tPA) protein and green fluorescent protein (pL-2.8OVtPAGFP) and assessed its expression in vitro and in vivo. Oviduct epithelial and 3T3 cells were cultured and transfected with pL-2.8OVtPAGFP and pEGP-N1 (control vector), respectively. The pL-2.8OVtPAGFP vector was administered to laying hens via a wing vein and their eggs and tissues were examined for tPA expression. The oviduct-specific vector pL-2.8OVtPAGFP was expressed only in oviduct epithelial cells whereas pEGP-N1 was detected in oviduct epithelial and 3T3 cells. Western blotting detected a 89 kDa band corresponding to tPA in egg white and oviduct epithelial cells, thus confirming expression of the protein. The amount of tPAGFP in eggs ranged 9 to 41 ng/mL on the third day after vector injection. The tPA expressed in egg white and oviduct epithelial cells showed fibrinolytic activity, indicating that the protein was expressed in active form. GFP was observed only in oviducts, with no detection in heart, muscle, liver and intestine. This is the first study to report the expression of tPA in egg white and oviduct epithelial cells using an oviduct-specific vector

    Establishment of Rat Embryonic Stem Cells and Making of Chimera Rats

    Get PDF
    The rat is a reference animal model for physiological studies and for the analysis of multigenic human diseases such as hypertension, diabetes, neurological disorders, and cancer. The rats have long been used in extensive chemical carcinogenesis studies. Thus, the rat embryonic stem (rES) cell is an important resource for the study of disease models. Attempts to derive ES cells from various mammals, including the rat, have not succeeded. Here we have established two independent rES cells from Wister rat blastocysts that have undifferentiated characters such as Nanog and Oct3/4 genes expression and they have stage-specific embryonic antigen (SSEA) -1, -3, -4, and TRA-1-81 expression. The cells were successfully cultured in an undifferentiated state and can be possible over 18 passages with maintaining more than 40% of normal karyotype. Their pluripotent potential was confirmed by the differentiation into derivatives of the endoderm, mesoderm, and ectoderm. Most importantly, the rES cells are capable of producing chimera rats. Therefore, we established pluripotent rES cell lines that are widely used to produce genetically modified experimental rats for study of human diseases

    A comparison of polarized and non-polarized human endometrial monolayer culture systems on murine embryo development

    Get PDF
    BACKGROUND: Co-culture of embryos with various somatic cells has been suggested as a promising approach to improve embryo development. Despite numerous reports regarding the beneficial effects of epithelial cells from the female genital tract on embryo development in a co-culture system, little is known about the effect of these cells when being cultured under a polarized condition on embryo growth. Our study evaluated the effects of in vitro polarized cells on pre-embryo development. METHODS: Human endometrial tissue was obtained from uterine specimens excised at total hysterectomy performed for benign indications. Epithelial cells were promptly isolated and cultured either on extra-cellular matrix gel (ECM-Gel) coated millipore filter inserts (polarized) or plastic surfaces (non-polarized). The epithelial nature of the cells cultured on plastic was confirmed through immunohistochemistry, and polarization of cells cultured on ECM-Gel was evaluated by transmission electron microscopy (TEM). One or two-cell stage embryos of a superovulated NMRI mouse were then flushed and placed in culture with either polarized or non-polarized cells and medium alone. Development rates were determined for all embryos daily and statistically compared. At the end of the cultivation period, trophectoderm (TE) and inner cell mass (ICM) of expanded blastocysts from each group were examined microscopically. RESULTS: Endometrial epithelial cells cultured on ECM-Gel had a highly polarized columnar shape as opposed to the flattened shape of the cells cultured on a plastic surface. The two-cell embryos cultured on a polarized monolayer had a higher developmental rate than those from the non-polarized cells. There was no statistically significant difference; still, the blastocysts from the polarized monolayer, in comparison with the non-polarized group, had a significantly higher mean cell number. The development of one-cell embryos in the polarized and non-polarized groups showed no statistically significant difference. CONCLUSION: Polarized cells could improve in vitro embryo development from the two-cell stage more in terms of quality (increasing blastocyst cellularity) than in terms of developmental rate

    The Liberation of Embryonic Stem Cells

    Get PDF
    Mouse embryonic stem (ES) cells are defined by their capacity to self-renew and their ability to differentiate into all adult tissues including the germ line. Along with efficient clonal propagation, these properties have made them an unparalleled tool for manipulation of the mouse genome. Traditionally, mouse ES (mES) cells have been isolated and cultured in complex, poorly defined conditions that only permit efficient derivation from the 129 mouse strain; genuine ES cells have not been isolated from another species in these conditions. Recently, use of small molecule inhibitors of glycogen synthase kinase 3 (Gsk3) and the Fgf-MAPK signaling cascade has permitted efficient derivation of ES cells from all tested mouse strains. Subsequently, the first verified ES cells were established from a non-mouse species, Rattus norvegicus. Here, we summarize the advances in our understanding of the signaling pathways regulating mES cell self-renewal that led to the first derivation of rat ES cells and highlight the new opportunities presented for transgenic modeling on diverse genetic backgrounds. We also comment on the implications of this work for our understanding of pluripotent stem cells across mammalian species

    Chromosome condensation activity (CCA) in bisected C57BL/6JxCBA mouse oocytes

    No full text
    corecore