212 research outputs found

    The Lorenz number in CeCoIn5_5 inferred from the thermal and charge Hall currents

    Full text link
    The thermal Hall conductivity κxy\kappa_{xy} and Hall conductivity σxy\sigma_{xy} in CeCoIn5_5 are used to determine the Lorenz number LH{\cal L}_H at low temperature TT. This enables the separation of the observed thermal conductivity into its electronic and non-electronic parts. We uncover evidence for a charge-neutral, field-dependent thermal conductivity, which we identify with spin excitations. At low TT, these excitations dominate the scattering of charge carriers. We show that suppression of the spin excitations in high fields leads to a steep enhancement of the electron mean-free-path, which leads to an interesting scaling relation between the magnetoresistance, thermal conductivity and σxy\sigma_{xy}.Comment: 6 pages, 7 figures Intro para slightly lengthened. Added 2 new re

    Ferroelectricity induced by spin-dependent metal-ligand hybridization in Ba2_2CoGe2_2O7_7

    Full text link
    We have investigated the variation of induced ferroelectric polarization under magnetic field with various directions and magnitudes in a staggered antiferromagnet Ba2_2CoGe2_2O7_7. While the ferroelectric polarization cannot be explained by the well-accepted spin current model nor exchange striction mechanism, we have shown that it is induced by the spin-dependent pp-dd hybridization between the transition-metal (Co) and ligand (O) via the spin-orbit interaction. On the basis of the correspondence between the direction of electric polarization and the magnetic state, we have also demonstrated the electrical control of the magnetization direction.Comment: 4 pages, 4 figure

    Anomalous thermopower and Nernst effect in CeCoIn5\rm CeCoIn_5: entropy-current loss in precursor state

    Full text link
    The heavy-electron superconductor CeCoIn5_5 exhibits a puzzling precursor state above its superconducting critical temperature at TcT_c = 2.3 K. The thermopower and Nernst signal are anomalous. Below 15 K, the entropy current of the electrons undergoes a steep decrease reaching \sim0 at TcT_c. Concurrently, the off-diagonal thermoelectric current αxy\alpha_{xy} is enhanced. The delicate sensitivity of the zero-entropy state to field implies phase coherence over large distances. The prominent anomalies in the thermoelectric current contrast with the relatively weak effects in the resistivity and magnetization.Comment: 5 figures, 4 page

    Giant directional dichroism of terahertz light in resonance with magnetic excitations of the multiferroic oxide BaCo2_2Ge2_2O7_7

    Full text link
    We propose that concurrently magnetic and ferroelectric, i.e. multiferroic, compounds endowed with electrically-active magnetic excitations (electromagnons) provide a key to produce large directional dichroism for long wavelengths of light. By exploiting the control of ferroelectric polarization and magnetization in a multiferroic oxide Ba2_2CoGe2_2O7_7, we demonstrate the realization of such a directional light-switch function at terahertz frequecies in resonance with the electromagnon absorption. Our results imply that this hidden potential is present in a broad variety of multiferroics

    Universal Scaling Behavior of Anomalous Hall Effect and Anomalous Nernst Effect in Itinerant Ferromagnets

    Full text link
    Anomalous Hall effect (AHE) and anomalous Nernst effect (ANE) in a variety of ferromagnetic metals including pure metals, oxides, and chalcogenides, are studied to obtain unified understandings of their origins. We show a universal scaling behavior of anomalous Hall conductivity σxy\sigma_{xy} as a function of longitudinal conductivity σxx\sigma_{xx} over five orders of magnitude, which is well explained by a recent theory of the AHE taking into account both the intrinsic and extrinsic contributions. ANE is closely related with AHE and provides us with further information about the low-temperature electronic state of itinerant ferromagnets. Temperature dependence of transverse Peltier coefficient αxy\alpha_{xy} shows an almost similar behavior among various ferromagnets, and this behavior is in good agreement quantitatively with that expected from the Mott rule.Comment: 4pages, 4figures, 1tabl

    A hidden constant in the anomalous Hall effect of a high-purity magnet MnSi

    Full text link
    Measurements of the Hall conductivity in MnSi can provide incisive tests of theories of the anomalous Hall (AH) effect, because both the mean-free-path and magnetoresistance (MR) are unusually large for a ferromagnet. The large MR provides an accurate way to separate the AH conductivity σxyA\sigma_{xy}^A from the ordinary Hall conductivity σxyN\sigma_{xy}^N. Below the Curie temperature TCT_C, σxyA\sigma_{xy}^A is linearly proportional to M M (magnetization) with a proportionality constant SHS_H that is independent of both TT and HH. In particular, SHS_H remains a constant while σxyN\sigma_{xy}^N changes by a factor of 100 between 5 K and TCT_C. We discuss implications of the hidden constancy in SHS_H.Comment: 5 pages, 4 figures. Minor change

    Dynamics of Multiferroic Domain Wall in Spin-Cycloidal Ferroelectric DyMnO3_{3}

    Full text link
    We report the dielectric dispersion of the giant magnetocapacitance (GMC) in multiferroic DyMnO3_{3} over a wide frequency range. The GMC is found to be attributable not to the softened electromagnon but to the electric-field-driven motion of multiferroic domain wall (DW). In contrast to conventional ferroelectric DWs, the present multiferroic DW motion holds extremely high relaxation rate of \sim10710^{7} s1^{-1} even at low temperatures. This mobile nature as well as the model simulation suggests that the multiferroic DW is not atomically thin as in ferroelectrics but thick, reflecting its magnetic origin.Comment: 4 pages, 4 figure

    Electric current control of spin helicity in an itinerant helimagnet

    Get PDF
    Chirality is breaking of mirror symmetry in matter. In the fields of biology and chemistry, this is particularly important because some of the essential molecules in life such as amino acids and DNA have chirality. It is a long-standing mystery how one of the enantiomers was chosen at the beginning stage of life. The understanding of the emergence of homochirality under some conditions is indispensable for the study of the origin of life as well as pharmaceutical science. The chirality is also emergent in magnetic structures. The longitudinal helical magnetic structure is the chiral object composed of magnetic moments, in which the ordered direction of the magnetic moment spatially rotates in the plane perpendicular to the propagation vector (Fig. 1a). Since the sense of rotation, which is denoted as helicity, is reversed by any mirror operation, it is corresponding to the chirality. Here we show that the chirality of a longitudinal helical structure can be controlled by the magnetic field and electric current owing to the spin-transfer torque irrelevant to the spin-orbit interaction and probed by electrical magnetochiral effect, which is sensitive to the chiral symmetry breaking, in an itinerant helimagnet MnP. This phenomenon is distinct from the multiferroicity in transverse-type insulating helical magnets, in which the helical plane is parallel to the propagation vector, because the magnetic structure has polar symmetry not chiral one. While the combination of the magnetic field and electric current satisfies the symmetrical rule of external stimulus for the chirality control, the control with them was not reported for any chiral object previously. The present result may pave a new route to the control of chiralities originating from magnetic and atomical arrangements.Comment: 14 pages, 7 figure
    corecore