1,369 research outputs found

    Statistical Study of the Reconnection Rate in Solar Flares Observed with YOHKOH/SXT

    Full text link
    We report a statistical study of flares observed with the Soft X-ray Telescope (SXT) onboard Yohkoh in the year of 2000. We measure physical parameters of 77 flares, such as the temporal scale, the size, and the magnetic flux density and find that the sizes of flares tend to be distributed more broadly as the GOES class becomes weaker and that there is a lower limit of magnetic flux density that depends on the GOES class. We also examine the relationship between these parameters and find weak correlation between temporal and spatial scales of flares. We estimate reconnection inflow velocity, coronal Alfven velocity, and reconnection rate using above observed values. The inflow velocities are distributed from a few km/s to several tens km/s and the Alfven velocities in the corona are in the range from 10^3 to 10^4 km/s. Hence the reconnection rate is 10^-3 - 10^-2. We find that the reconnection rate in a flare tends to decrease as the GOES class of the flare increases. This value is within one order of magnitude from the theoretical maximum value predicted by the Petschek model, although the dependence of the reconnection rate on the magnetic Reynolds number tends to be stronger than that in the Petschek model.Comment: 21 pages, 8 figures, accepted for publication in Ap

    Large-scale distributions of mid- and far-infrared emission from the center to the halo of M82 revealed with AKARI

    Get PDF
    The edge-on starburst galaxy M82 exhibits complicated distributions of gaseous materials in its halo, which include ionized superwinds driven by nuclear starbursts, neutral materials entrained by the superwinds, and large-scale neutral streamers probably caused by a past tidal interaction with M81. We investigate detailed distributions of dust grains and polycyclic aromatic hydrocarbons (PAHs) around M82 to understand their interplay with the gaseous components. We performed mid- (MIR) and far-infrared (FIR) observations of M82 with the Infrared Camera and Far-Infrared Surveyor on board AKARI. We obtain new MIR and FIR images of M82, which reveal both faint extended emission in the halo and very bright emission in the center with signal dynamic ranges as large as five and three orders of magnitude for the MIR and FIR, respectively. We detect MIR and FIR emission in the regions far away from the disk of the galaxy, reflecting the presence of dust and PAHs in the halo of M82. We find that the dust and PAHs are contained in both ionized and neutral gas components, implying that they have been expelled into the halo of M82 by both starbursts and galaxy interaction. In particular, we obtain a tight correlation between the PAH and Hα\alpha emission, which provides evidence that the PAHs are well mixed in the ionized superwind gas and outflowing from the disk.Comment: 12 pages, 8 figures, accepted for publication in A&

    Galactic Wind Signatures around High Redshift Galaxies

    Full text link
    We carry out cosmological chemodynamical simulations with different strengths of supernova (SN) feedback and study how galactic winds from star-forming galaxies affect the features of hydrogen (HI) and metal (CIV and OVI) absorption systems in the intergalactic medium at high redshift. We find that the outflows tend to escape to low density regions, and hardly affect the dense filaments visible in HI absorption. As a result, the strength of HI absorption near galaxies is not reduced by galactic winds, but even slightly increases. We also find that a lack of HI absorption for lines of sight (LOS) close to galaxies, as found by Adelberger et al., can be created by hot gas around the galaxies induced by accretion shock heating. In contrast to HI, metal absorption systems are sensitive to the presence of winds. The models without feedback can produce the strong CIV and OVI absorption lines in LOS within 50 kpc from galaxies, while strong SN feedback is capable of creating strong CIV and OVI lines out to about twice that distance. We also analyze the mean transmissivity of HI, CIV, and OVI within 1 h1^{-1} Mpc from star-forming galaxies. The probability distribution of the transmissivity of HI is independent of the strength of SN feedback, but strong feedback produces LOS with lower transmissivity of metal lines. Additionally, strong feedback can produce strong OVI lines even in cases where HI absorption is weak. We conclude that OVI is probably the best tracer for galactic winds at high redshift.Comment: 16 pages, 16 figures, ApJ in press. Higher resolution version available at http://www.ociw.edu/~dkawata/research/papers.htm

    Detection of Polarized Broad Emission in the Seyfert 2 Galaxy Mrk 573

    Full text link
    We report the discovery of the scattered emission from a hidden broad-line region (BLR) in a Seyfert 2 galaxy, Mrk 573, based on our recent spectropolarimetric observation performed at the Subaru Telescope. This object has been regarded as a type 2 AGN without a hidden BLR by the previous observations. However, our high quality spectrum of the polarized flux of Mrk 573 shows prominent broad (~3000 km/s) H_alpha emission, broad weak H_beta emission, and subtle Fe II multiplet emission. Our new detection of these indications for the presence of the hidden BLR in the nucleus of Mrk 573 is thought to be owing to the high signal-to-noise ratio of our data, but the possibility of a time variation of the scattered BLR emission is also mentioned. Some diagnostic quantities such as the IRAS color, the radio power, and the line ratio of the emission from the narrow-line region of Mrk 573 are consistent with the distributions of such quantities of type 2 AGNs with a hidden BLR. Mrk 573 is thought to be an object whose level of the AGN activity is the weakest among the type 2 AGNs with a hidden BLR. In terms of the systematic differences between the type 2 AGNs with and without a hidden BLR, we briefly comment on an interesting Seyfert 2 galaxy, Mrk 266SW, which may possess a hidden BLR but has been treated as a type 2 AGNs without a hidden BLR.Comment: 9 pages including 6 figures, to appear in The Astronomical Journa

    The ALMA Discovery of the Rotating Disk and Fast Outflow of Cold Molecular Gas in NGC 1275

    Full text link
    We present ALMA Band 6 observations of the CO(2-1), HCN(3-2), and HCO+^{+}(3-2) lines in the nearby radio galaxy / brightest cluster galaxy (BCG) of NGC 1275 with the spatial resolution of 20\sim20 pc. In the previous observations, CO(2-1) emission was detected as radial filaments lying in the east-west direction. We resolved the inner filament and found that the filament cannot be represented by a simple infalling stream both morphologically and kinematically. The observed complex nature of the filament resembles the cold gas structure predicted by recent numerical simulations of cold chaotic accretion. A crude estimate suggests that the accretion rate of the cold gas can be higher than that of hot gas. Within the central 100 pc, we detected a rotational disk of the molecular gas whose mass is \sim10^{8} M_{\sun}. This is the first evidence of the presence of massive cold gas disk on this spatial scale for BCGs. The disk rotation axis is approximately consistent with the axis of the radio jet on subpc scales. This probably suggests that the cold gas disk is physically connected to the innermost accretion disk which is responsible for jet launching. We also detected absorption features in the HCN(3-2) and HCO+^{+}(3-2) spectra against the radio continuum emission mostly radiated by 1.2\sim1.2-pc size jet. The absorption features are blue-shifted from the systemic velocity by \sim300-600~km~s1^{-1}, which suggests the presence of outflowing gas from the active galactic nucleus (AGN). We discuss the relation of the AGN feeding with cold accretion, the origin of blue-shifted absorption, and estimate of black hole mass using the molecular gas dynamics.Comment: Version 2 (accepted version). 18 pages, 16 figures. Accepted for publication in Ap

    A New Superwind Wolf-Rayet Galaxy Mrk 1259

    Full text link
    We report the discovery of a starburst-driven wind (superwind) from the starburst nucleus galaxy Mrk 1259. The estimated number ratio of Wolf-Rayet (WR) to O stars amounts to ~0.09. While the nuclear emission-line region is due to usual photoionization by massive stars, the circumnuclear emission-line regions show anomalous line ratios that can be due to cooling shocks. Since the host galaxy seems to be a face-on disk galaxy and the excitation conditions of the circumnuclear emission-line regions show the spatial symmetry, we consider that we are seeing the superwind nearly from a pole-on view. Cooling shock models may explain the observed emission line ratios of the circumnuclear regions although a factor of 2 overabundance of nitrogen is necessary. All these suggest that the high-mass enhanced starburst occurred ~5X10^6 years ago in the nuclear region of Mrk 1259.Comment: To be published in the Astrophysical Journal Letters, 15 pages, 4 figure
    corecore