3,693 research outputs found

    Hydrodynamic Simulations of Counterrotating Accretion Disks

    Get PDF
    Hydrodynamic simulations have been used to study accretion disks consisting of counterrotating components with an intervening shear layer(s). Configurations of this type can arise from the accretion of newly supplied counterrotating matter onto an existing corotating disk. The grid-dependent numerical viscosity of our hydro code is used to simulate the influence of a turbulent viscosity of the disk. Firstly, we consider the case where the gas well above the disk midplane rotates with angular rate +\Omega(r) and that well below has the same properties but rotates with rate -\Omega(r). We find that there is angular momentum annihilation in a narrow equatorial boundary layer in which matter accretes supersonically with a velocity which approaches the free-fall velocity and the average accretion speed of the disk can be enormously larger than that for a conventional \alpha-disk rotating in one direction. Secondly, we consider the case of a corotating accretion disk for rr_t. In this case we observed, that matter from the annihilation layer lost its stability and propagated inward pushing matter of inner regions of the disk to accrete. Thirdly, we investigated the case where counterrotating matter inflowing from large radial distances encounters an existing corotating disk. Friction between the inflowing matter and the existing disk is found to lead to fast boundary layer accretion along the disk surfaces and to enhanced accretion in the main disk. These models are pertinent to the formation of counterrotating disks in galaxies and possibly in Active Galactic Nuclei and in X-ray pulsars in binary systems.Comment: LaTeX, 18 pages, to appear in Ap

    The structure of cool accretion disc in semidetached binaries

    Full text link
    We present the results of qualitative consideration of possible changes occurring during the transition from the hot accretion disc to the cool one. We argue the possible existence of one more type of spiral density waves in the inner part of the disc where gasdynamical perturbations are negligible. The mechanism of formation of such a wave as well as its parameters are considered. We also present the results of 3D gasdynamical simulation of cool accretion discs. These results confirm the hypothesis of possible formation of the spiral wave of a new, "precessional" type in the inner regions of the disc. Possible observational manifestations of this wave are discussed.Comment: LaTeX, 16 pages, 8 figures, to be published in Astron. Z

    Converting genetic network oscillations into somite spatial pattern

    Full text link
    In most vertebrate species, the body axis is generated by the formation of repeated transient structures called somites. This spatial periodicity in somitogenesis has been related to the temporally sustained oscillations in certain mRNAs and their associated gene products in the cells forming the presomatic mesoderm. The mechanism underlying these oscillations have been identified as due to the delays involved in the synthesis of mRNA and translation into protein molecules [J. Lewis, Current Biol. {\bf 13}, 1398 (2003)]. In addition, in the zebrafish embryo intercellular Notch signalling couples these oscillators and a longitudinal positional information signal in the form of an Fgf8 gradient exists that could be used to transform these coupled temporal oscillations into the observed spatial periodicity of somites. Here we consider a simple model based on this known biology and study its consequences for somitogenesis. Comparison is made with the known properties of somite formation in the zebrafish embryo . We also study the effects of localized Fgf8 perturbations on somite patterning.Comment: 7 pages, 7 figure

    The 2006 Radio Outburst of a Microquasar Cyg X-3: Observation and Data

    Full text link
    We present the results of the multi-frequency observations of radio outburst of the microquasar Cyg X-3 in February and March 2006 with the Nobeyama 45-m telescope, the Nobeyama Millimeter Array, and the Yamaguchi 32-m telescope. Since the prediction of a flare by RATAN-600, the source has been monitored from Jan 27 (UT) with these radio telescopes. At the eighteenth day after the quench of the activity, successive flares exceeding 1 Jy were observed successfully. The time scale of the variability in the active phase is presumably shorter in higher frequency bands. We also present the result of a follow-up VLBI observation at 8.4 GHz with the Japanese VLBI Network (JVN) 2.6 days after the first rise. The VLBI image exhibits a single core with a size of <8 mas (80 AU). The observed image was almost stable, although the core showed rapid variation in flux density. No jet structure was seen at a sensitivity of Tb=7.5×105T_b = 7.5\times 10^5 K.Comment: 17 pages,6 figures; accepted by PAS

    Right-Handed Sector Leptogenesis

    Full text link
    Instead of creating the observed baryon asymmetry of the universe by the decay of right-handed (RH) neutrinos to left-handed leptons, we propose to generate it dominantly by the decay of the RH neutrinos to RH leptons. This mechanism turns out to be successful in large regions of parameter space. It may work, in particular, at a scale as low as \sim~TeV, with no need to invoke quasi-degenerate RH neutrino masses to resonantly enhance the asymmetry. Such a possibility can be probed experimentally by the observation at colliders of a singlet charged Higgs particle and of RH neutrinos. Other mechanisms which may lead to successful leptogenesis from the RH lepton sector interactions are also briefly presented. The incorporation of these scenarios in left-right symmetric and unified models is discussed.Comment: 14 pages, latex, axodraw; minor clarifications and references added, extended discussion of the signatures at collider

    On a model with two zeros in the neutrino mass matrix

    Full text link
    We consider a Majorana neutrino mass matrix Mν\mathcal{M}_\nu with (Mν)μμ=(Mν)ττ=0(\mathcal{M}_\nu)_{\mu\mu} = (\mathcal{M}_\nu)_{\tau\tau} = 0, in the basis where the charged-lepton mass matrix is diagonal. We show that this pattern for the lepton mass matrices can be enforced by extending the Standard Model with three scalar SU(2) triplets and by using a horizontal symmetry group \mathbbm{Z}_4. The Ma--Sarkar (type-II seesaw) mechanism leads to very small vacuum expectation values for the triplets, thus explaining the smallness of the neutrino masses; at the same time, that mechanism renders the physical scalars originating in the triplets very heavy. We show that the conditions (Mν)μμ=(Mν)ττ=0(\mathcal{M}_\nu)_{\mu\mu} = (\mathcal{M}_\nu)_{\tau\tau} = 0 allow both for a normal neutrino mass spectrum and for an inverted one. In the first case, the neutrino masses must be larger than 0.1eV0.1 {eV} and the atmospheric mixing angle θ23\theta_{23} must be practically equal to 4545^\circ. In the second case, the product sinθ13tan2θ23\sin{\theta_{13}} | \tan{2 \theta_{23}} | must be of order one or larger, thus correlating the large or maximal atmospheric neutrino mixing with the smallness of the mixing angle θ13\theta_{13}.Comment: 13 pages, no figures, plain LaTeX; one equation added, published references updated, final version for J. Phys.
    corecore