57 research outputs found

    WAP four-disulfide core domain protein 2 promotes metastasis of human ovarian cancer by regulation of metastasis-associated genes.

    Get PDF
    BACKGROUND: WAP four-disulfide core domain protein 2 (WFDC2) shows a tumor-restricted upregulated pattern of expression in ovarian cancer. METHODS: In this study, we evaluated the role of WFCD2 in tumor mobility, invasion and metastasis of ovarian cancer in clinical tissue and in ovarian cancer cells, both in vitro and in vivo. RESULTS: Our results revealed WFCD2 was overexpressed in ovarian tissues, and the expression level of WFCD2 was associated with metastasis and lymph node metastasis. Higher expression of WFCD2 was also observed in aggressive HO8910-PM cells than in HO8910 cells, and WFCD2 knockdown halted cell migration, invasion, tumorigenicity and metastasis in ovarian cancer cells, both in vitro and in vivo. Knockdown of WFDC2 induced the down-regulation of ICAM-1, CD44, and MMP2. CONCLUSION: In summary, our work demonstrates that WFCD2 promotes metastasis in ovarian cancer. These findings suggest that WFCD2 plays a critical role in promoting metastasis and may constitute a potential therapeutic target of ovarian cancer

    ATP synthase: from single molecule to human bioenergetics

    Get PDF
    ATP synthase (FoF1) consists of an ATP-driven motor (F1) and a H+-driven motor (Fo), which rotate in opposite directions. FoF1 reconstituted into a lipid membrane is capable of ATP synthesis driven by H+ flux. As the basic structures of F1 (α3β3γδΡ) and Fo (ab2c10) are ubiquitous, stable thermophilic FoF1 (TFoF1) has been used to elucidate molecular mechanisms, while human F1Fo (HF1Fo) has been used to study biomedical significance. Among F1s, only thermophilic F1 (TF1) can be analyzed simultaneously by reconstitution, crystallography, mutagenesis and nanotechnology for torque-driven ATP synthesis using elastic coupling mechanisms. In contrast to the single operon of TFoF1, HFoF1 is encoded by both nuclear DNA with introns and mitochondrial DNA. The regulatory mechanism, tissue specificity and physiopathology of HFoF1 were elucidated by proteomics, RNA interference, cytoplasts and transgenic mice. The ATP synthesized daily by HFoF1 is in the order of tens of kilograms, and is primarily controlled by the brain in response to fluctuations in activity

    Immune Cell Recruitment and Cell-Based System for Cancer Therapy

    Get PDF
    Immune cells, such as cytotoxic T lymphocytes, natural killer cells, B cells, and dendritic cells, have a central role in cancer immunotherapy. Conventional studies of cancer immunotherapy have focused mainly on the search for an efficient means to prime/activate tumor-associated antigen-specific immunity. A systematic understanding of the molecular basis of the trafficking and biodistribution of immune cells, however, is important for the development of more efficacious cancer immunotherapies. It is well established that the basis and premise of immunotherapy is the accumulation of effective immune cells in tumor tissues. Therefore, it is crucial to control the distribution of immune cells to optimize cancer immunotherapy. Recent characterization of various chemokines and chemokine receptors in the immune system has increased our knowledge of the regulatory mechanisms of the immune response and tolerance based on immune cell localization. Here, we review the immune cell recruitment and cell-based systems that can potentially control the systemic pharmacokinetics of immune cells and, in particular, focus on cell migrating molecules, i.e., chemokines, and their receptors, and their use in cancer immunotherapy

    Mechanisms of Granulin Deficiency: Lessons from Cellular and Animal Models

    Get PDF
    • …
    corecore