28 research outputs found

    Electromagnetic duality in general relativity

    Full text link
    By resolving the Riemann curvature relative to a unit timelike vector into electric and magnetic parts, we consider duality relations analogous to the electromagnetic theory. It turns out that the duality symmetry of the Einstein action implies the Einstein vacuum equation without the cosmological term. The vacuum equation is invariant under interchange of active and passive electric parts giving rise to the same vacuum solutions but the gravitational constant changes sign. Further by modifying the equation it is possible to construct interesting dual solutions to vacuum as well as to flat spacetimes.Comment: 18 pages, LaTEX versio

    Beyond the Small-Angle Approximation For MBR Anisotropy from Seeds

    Full text link
    In this paper we give a general expression for the energy shift of massless particles travelling through the gravitational field of an arbitrary matter distribution as calculated in the weak field limit in an asymptotically flat space-time. It is {\it not} assumed that matter is non-relativistic. We demonstrate the surprising result that if the matter is illuminated by a uniform brightness background that the brightness pattern observed at a given point in space-time (modulo a term dependent on the oberver's velocity) depends only on the matter distribution on the observer's past light-cone. These results apply directly to the cosmological MBR anisotropy pattern generated in the immediate vicinity of of an object like a cosmic string or global texture. We apply these results to cosmic strings, finding a correction to previously published results for in the small-angle approximation. We also derive the full-sky anisotropy pattern of a collapsing texture knot.Comment: 23 pages, FERMILAB-Pub-94/047-

    On the sign of the neutrino asymmetry induced by active-sterile neutrino oscillations in the early Universe

    Get PDF
    We deal with the problem of the final sign of the neutrino asymmetry generated by active-sterile neutrino oscillations in the Early Universe solving the full momentum dependent quantum kinetic equations. We study the parameter region 10−2∌<∣Ύm2∣/eV2≀10310^{-2} \stackrel{<}{\sim} |\delta m^2|/eV^2\le 10^3. For a large range of sin⁥22Ξ0\sin^2 2\theta_0 values the sign of the neutrino asymmetry is fixed and does not oscillate. For values of mixing parameters in the region 10−6∌<sin⁥22Ξ0∌<3×10−4(eV2/∣Ύm2∣)10^{-6}\stackrel{<}{\sim}\sin^{2}2\theta_{0}\stackrel{<}{\sim} 3\times 10^{-4} ({\rm eV}^{2}/|\delta m^{2}|), the neutrino asymmetry appears to undergo rapid oscillations during the period where the exponential growth occurs. Our numerical results indicate that the oscillations are able to change the neutrino asymmetry sign. The sensitivity of the solutions and in particular of the final sign of lepton number to small changes in the initial conditions depends whether the number of oscillations is high enough. It is however not possible to conclude whether this effect is induced by the presence of a numerical error or is an intrinsic feature. As the amplitude of the statistical fluctuations is much lower than the numerical error, our numerical analysis cannot demonstrate the possibility of a chaotical generation of lepton domains. In any case this possibility is confined to a special region in the space of mixing parameters and it cannot spoil the compatibility of the ΜΌ↔Μs\nu_{\mu}\leftrightarrow\nu_{s} solution to the neutrino atmospheric data obtained assuming a small mixing of the Îœs\nu_{s} with an eV−τ{\rm eV}-\tau neutrino.Comment: Typo's corrected, accepted for publication in Phys.Rev.

    Electromagnetic properties of a neutrino stream

    Get PDF
    In a medium that contains a neutrino background in addition to the matter particles, the neutrinos contribute to the photon self-energy as a result of the effective electromagnetic vertex that they acquire in the presence of matter. We calculate the contribution to the photon self-energy in a dense plasma, due to the presence of a gas of charged particles, or neutrinos, that moves as a whole relative to the plasma. General formulas for the transverse and longitudinal components of the photon polarization tensor are obtained in terms of the momentum distribution functions of the particles in the medium, and explicit results are given for various limiting cases of practical interest. The formulas are used to study the electromagnetic properties of a plasma that contains a beam of neutrinos. The transverse and longitudinal photon dispersion relations are studied in some detail. Our results do not support the idea that neutrino streaming instabilities can develop in such a system. We also indicate how the phenomenon of optical activity of the neutrino gas is modified due to the velocity of the neutrino background relative to the plasma. The general approach and results can be adapted to similar problems involving relativistic plasmas and high-temperature gauge theories in other environments.Comment: Revtex, 19 pages and 3 included ps file

    On the Evolution of the Neutrino State inside the Sun

    Get PDF
    We reexamine the conventional physical description of the neutrino evolution inside the Sun. We point out that the traditional resonance condition has physical meaning only in the limit of small values of the neutrino mixing angle, theta<<1. For large values of theta, the resonance condition specifies neither the point of the maximal violation of adiabaticity in the nonadiabatic case, nor the point where the flavor conversion occurs at the maximal rate in the adiabatic case. The corresponding correct conditions, valid for all values of theta including theta>pi/4, are presented. An adiabaticity condition valid for all values of theta is also described. The results of accurate numerical computations of the level jumping probability in the Sun are presented. These calculations cover a wide range of Delta m^2, from the vacuum oscillation region to the region where the standard exponential approximation is good. A convenient empirical parametrization of these results in terms of elementary functions is given. The matter effects in the so-called "quasi-vacuum oscillation regime" are discussed. Finally, it is shown how the known analytical results for the exponential, 1/x, and linear matter distributions can be simply obtained from the formula for the hyperbolic tangent profile. An explicit formula for the jumping probability for the distribution N_e ~ (coth(x/l) +- 1) is obtained.Comment: 34 pages, 8 figure

    Active-sterile neutrino oscillations in the early Universe: asymmetry generation at low |delta m^2| and the Landau-Zener approximation

    Get PDF
    It is well established that active-sterile neutrino oscillations generate large neutrino asymmetries for very small mixing angles (sin⁥22Ξ0â‰Č10−4\sin^2 2\theta_0\lesssim 10^{-4}), negative values of ÎŽm2\delta m^2 and provided that ∣Ύm2∣≳10−4eV2|\delta m^2|\gtrsim 10^{-4} {\rm eV^2}. By numerically solving the quantum kinetic equations, we show that the generation still occurs at much lower values of ∣Ύm2∣|\delta m^2|. We also describe the borders of the generation at small mixing angles and show how our numerical results can be analytically understood within the framework of the Landau-Zener approximation thereby extending previous work based on the adiabatic limit. This approximate approach leads to a fair description of the MSW dominated regime of the neutrino asymmetry evolution and is also able to correctly reproduce its final value. We also briefly discuss the impact that neutrino asymmetry generation could have on big bang nucleosynthesis, CMBR and relic neutrinos.Comment: 29 pages, 8 figures; to appear on Phys. ReV. D; figure 7 added, new curves in figure 5a, new figure

    Detailed study of BBN implications of neutrino oscillation generated neutrino asymmetries in some four neutrino models

    Get PDF
    We re-examine the evolution of neutrino asymmetries in several four neutrino models. The first case involves the direct creation of LÎœeL_{\nu_e} by Îœe↔Μs\nu_e \leftrightarrow \nu_s oscillations. In the second case, we consider the mass hierarchy mΜτ≫mΜΌ,mÎœe,mÎœsm_{\nu_\tau} \gg m_{\nu_\mu}, m_{\nu_e}, m_{\nu_s} where Μτ↔Μs\nu_\tau \leftrightarrow \nu_s oscillations generate a large LΜτL_{\nu_\tau} and some of this asymmetry is converted into LÎœeL_{\nu_e} by Μτ↔Μe\nu_{\tau} \leftrightarrow \nu_{e} oscillations. We estimate the implications for BBN for a range of cosmologically interesting ÎŽm2\delta m^2 values. The present paper improves on previous published work by taking into account the finite repopulation rate and the time dependence of the distortions to the neutrino momentum distributions. The treatment of chemical decoupling is also improved.Comment: Expanded discussion on the sign of the neutrino asymmetr

    Possible Tomography of the Sun's Magnetic Field with Solar Neutrinos

    Get PDF
    The data from solar neutrino experiments together with standard solar model predictions are used in order to derive the possible profile of the magnetic field inside the Sun, assuming the existence of a sizeable neutrino magnetic moment and the resonant spin flavour mechanism. The procedure is based on the relationship between resonance location and the energy dependent neutrino suppression, so that a large neutrino suppression at a given energy is taken to be connected to a large magnetic field in a given region of the Sun. In this way it is found that the solar field must undergo a very sharp increase by a factor of at least 6 - 7 over a distance no longer than 7 - 10% of the solar radius, decreasing gradually towards the surface. The range in which this sharp increase occurs is likely to be the bottom of the convective zone. There are also indications in favour of the downward slope being stronger at the start and more moderate on approaching the solar surface. Typical ranges for the magnetic moment are from a few times 10^{-13}\mu_B to its laboratory upper bounds while the mass square difference between neutrino flavours is of order (0.6-1.9) x 10^{-8}eV^2.Comment: Several minor corrections performed, sunspot anticorrelation discussed, references added, 29 pages including 8 figures in PostScrip

    How precisely can we reduce the three-flavor neutrino oscillation to the two-flavor one only from (\delta m^2_{12})/(\delta m^2_{13}) <~ 1/15 ?

    Get PDF
    We derive the reduction formula, which expresses the survival rate for the three-flavor neutrino oscillation by the two-flavor one, to the next-to-leading order in case there is one resonance due to the matter effect. We numerically find that the next-to-leading reduction formula is extremely accurate and the improvement is relevant for the precision test of solar neutrino oscillation and the indirect measurment of CP violation in the leptonic sector. We also derive the reduction formula, which is slightly different from that previously obtained, in case there are two resonances. We numerically verify that this reduction formula is quite accurate and is valid for wider parameter region than the previously obtained ones are.Comment: 28pages, 8figures, revtex4. to appear in PR

    Cerenkov radiation of longitudinal photons by neutrinos

    Full text link
    In a relativistic plasma neutrino can emit plasmons by the Cerenkov process which is kinematically allowed for a range of frequencies for which refractive index is greater than one. We have calculated the rate of energy emission by this process. We compute the energy deposited in a stalled supernova shock wave by the Cerenkov process and find that it is much smaller than the Bethe-Wilson mechanism.Comment: 11 pages, 2 figures available on reques
    corecore