17 research outputs found

    Equilibrium First-Order Melting and Second-Order Glass Transitions of the Vortex Matter in Bi2_2Sr2_2CaCu2_2O8_8

    Full text link
    The thermodynamic H−TH-T phase diagram of Bi2_2Sr2_2CaCu2_2O8_8 was mapped by measuring local \emph{equilibrium} magnetization M(H,T)M(H,T) in presence of vortex `shaking'. Two equally sharp first-order magnetization steps are revealed in a single temperature sweep, manifesting a liquid-solid-liquid sequence. In addition, a second-order glass transition line is revealed by a sharp break in the equilibrium M(T)M(T) slope. The first- and second-order lines intersect at intermediate temperatures, suggesting the existence of four phases: Bragg glass and vortex crystal at low fields, glass and liquid at higher fields.Comment: 5 pages, 4 figures. To be published in Phys. Rev. Let

    Interplay of Anisotropy and Disorder in the Doping-Dependent Melting and Glass Transitions of Vortices in Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta}

    Full text link
    We study the oxygen doping dependence of the equilibrium first-order melting and second-order glass transitions of vortices in Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta}. Doping affects both anisotropy and disorder. Anisotropy scaling is shown to collapse the melting lines only where thermal fluctuations are dominant. Yet, in the region where disorder breaks that scaling, the glass lines are still collapsed. A quantitative fit to melting and replica symmetry breaking lines of a 2D Ginzburg-Landau model further reveals that disorder amplitude weakens with doping, but to a lesser degree than thermal fluctuations, enhancing the relative role of disorder.Comment: 4 pages, 4 figure

    Evidence for a Two-stage Melting Transition of the Vortex Matter in Bi2Sr2Ca1Cu2O8+d Single Crystals obtained by Muon Spin Rotation

    Full text link
    From muon spin rotation measurements on under- to overdoped Bi-2212 crystals we obtain evidence for a two-stage transition of the vortex matter as a function of temperature. The first transition is well known and related to the irreversibility line (IL). The second one is located below the IL and has not been previously observed. It occurs for all three sets of crystals and is unrelated to the vortex mobility. Our data are consistent with a two-stage melting scenario where the intra-planar melting of the vortex lattice and the inter-planar decoupling of the vortex lines occur independently.Comment: 9 pages and 3 figure

    Possible new vortex matter phases in BSCCO

    Full text link
    The vortex matter phase diagram of BSCCO crystals is analyzed by investigating vortex penetration through the surface barrier in the presence of a transport current. The strength of the effective surface barrier, its nonlinearity, and asymmetry are used to identify a possible new ordered phase above the first-order transition. This technique also allows sensitive determination of the depinning temperature. The solid phase below the first-order transition is apparently subdivided into two phases by a vertical line extending from the multicritical point.Comment: 11 pages, 3 figures, accepted for publication in PR

    Electron irradiation effect on the double hump magnetization loop in BSCOO crystals

    No full text
    communication a : International Conference on Materials and Mechanisms of Superconductivity, High Temperature, Kanazawa (JP), 22-26 July 1991SIGLEAvailable at INIST (FR), Document Supply Service, under shelf-number : RM 1297 / INIST-CNRS - Institut de l'Information Scientifique et TechniqueFRFranc

    Elaboration, microstructure, propriétés électriques et magnétiques de matériaux textures dans les systèmes Nd-Ce-Cu-O et Bi-Sr-Ca-Cu-O

    No full text
    Superconducting textured materials were grown from the melt by a floating zone technique in the Nd-Ce-Cu-O and Bi-Sr-Ca-Cu-O systems. The influence of growth conditions and starting compositions on the microstructures and phase composition of the samples were studied by optical microscopy under polarized light, electron microprobe analysis and X-ray diffraction. The superconducting properties of these samples were examined by both electrical resistivity and magnetic measurements. A very strong influence of the microstructure on the superconducting properties as well as a magnetic and electrical anisotropy were shown. In the case of the Bi-Sr-Ca-Cu-O system, critical current densities ranging from 1 600 to 3 000 A.cm−2^{-2} were measured at 77 K.Des matériaux supraconducteurs texturés ont été élaborés à partir de l'état liquide dans les systèmes Nd-Ce-Cu-O et Bi-Sr-Ca-Cu-O par une technique de fusion de zone. L'influence des conditions de croissance et des compositions initiales sur la microstructure des échantillons a été étudiée par microscopie optique en lumière polarisée, microsonde électronique et diffraction des rayons X. Les propriétés supraconductrices des échantillons ont été examinées par des mesures électriques et magnétiques. Il a été observé une forte influence de la microstructure sur les propriétés supraconductrices ainsi qu'une anisotropie électrique et magnétique. Dans le cas du système Bi-Sr-Ca-Cu-O, les densités de courant critique mesurées à 77 K sont comprises entre 1 600 et 3 000 A.cm−2^{-2}
    corecore